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Introduction

When combining the Standard Model (SM) of elementary particle physics with gen-
eral relativity for classical gravity, one can account for many of the observed phe-
nomena in nature. Since both theories describe physics on largely separated energy
scales, the electroweak scale MEW and the Planck mass MPl differ by 16 orders of
magnitude, one can ask for an explanation of this disparity. Lisa Randall and Raman
Sundrum presented a solution to this Hierarchy Problem (HP) in 1998 [1], by supple-
menting four-dimensional space-time with one warped extra-dimension. Remarkably,
their framework further admits an explanation for the hierarchical structure of the
quark masses and mixing, which are treated within the SM just as input parame-
ters. Hence, the actual Randall-Sundrum (RS) model represents a promising theory
Beyond the Standard Model (BSM). Still each New Physics (NP) model has to pass
already performed high-energy precision measurements, that are in tremendously
well agreement with the SM predictions. Especially the flavor violating sector con-
stitutes a high hurdle for many BSM theories, since they often involve new sources of
flavor violation. However, the RS model provides an intrinsic mechanism to suppress
Flavor-Changing Neutral Current processes. While the suppression is sufficient for
many processes, there remains a single exception: the CP violating εK observable
in K0-K̄0 mixing.

This directly leads to the purpose of this thesis. In order to mitigate the tension
between the theoretical and the experimental value of εK within the RS framework,
we will present an extension of the Minimal RS model, that will include the proposal
of a new colored gauge boson as well as a first treatment of the new Higgs sector.
The discussion will be structured in the following way.

To lay the foundation for the subsequent chapters, we will briefly summarize the
basic principles of quantum field theory and then proceed to the formulation of the
Standard Model (chapter 1). Taking the modern view on the SM as an effective low-
energy description of some more fundamental (unknown) theory, we will elaborate on
the HPs and the issue of fine-tuning. Given the motivation to propose BSM theories,
we will stick to the class of models that extend Minkowski space-time by additional
spatial dimensions. After briefly reviewing some early ideas, we will focus on the
proposal of Lisa Randall and Raman Sundrum and discuss a specific realization of
their idea, referred to as the Minimal RS model, in more detail (chapter 2). All
calculations in this framework will encompass tree-level diagrams, exchanging a five-
dimensional gauge boson between two incoming and outgoing quarks. Thereby, the
appearing five-dimensional boson propagator will play a key role and we will derive
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a general expression that is applicable for bosonic particles with spin one (chapter
3). This will provide the necessary equipment to discuss K0-K̄0 mixing in the RS
model. Before, we will introduce the εK observable and link its definition to a
calculable matrix element on the basis of an effective Hamiltonian. After a short
consideration of this observable in the SM, we will switch to the RS model and
derive an approximate formula for εK in order to locate the origin of the enhanced
theoretical value when compared with the experimental measurement (chapter 4).
To mitigate this tension, we will extend the strong gauge sector of the Minimal
RS model, which leads to the introduction of a so called pseudo-axial gluon. After
describing this proposal in detail, we will perform a numerical analysis and compare
the εK prediction of the Minimal RS model with the one in the extended version
(chapter 5). It will turn out that for a realistic extension, one has to modify the Higgs
sector by introducing new color charged fields on both ends of the extra-dimension.
After presenting the basic formulation within the RS framework (chapter 6), we will
conclude and present an outlook for prospective work to be done.
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1. The Standard Model of Particle
Physics

The Standard Model is a mathematical description of elementary particles and their
interactions via the strong, weak and electromagnetic forces. Being a quantum field
theory, we shortly repeat the underlying principles in section 1.1 and discuss the issue
of renormalization, on the basis of an example in Quantum Chromodynamics (QCD).
After that, we proceed with the Lagrangian formulation of the SM in 1.2, which is
nowadays viewed as a low energy description of a more fundamental (unknown)
theory (sections 1.3 and 1.4). In this context, we will encounter several Hierarchy
Problems, that motivate and guide the search for New Physics models.

1.1. Basic Principles
Since experimentalists measure cross sections or decay rates, we should start with
the description of a scattering process [2]. The typical situation is, that several
particles approach each other from a macroscopically large distance and then interact
in a microscopically small region. What we need is an Hamiltonian, that can be
decomposed into a free H0 and an interaction part HI ,

H = H0 +HI . (1.1)

The particles long before (t → −∞) or long after (t → +∞) the scattering process
are non-interacting, free particle states. Therefore, they are eigenstates of H0 and
we denote them by |α〉0 and |β〉0. The labels α and β summarize their properties
like mass m, spin s, spin projection σ (helicity for massless particles) and further
internal quantum numbers n (like electric charge Qe),

α = (m1, s1, σ1, n1;m2, s2, σ2, n2; ...) (1.2)

and analogously for β. The interacting states of the scattering process must be
eigenstates1 of the full Hamiltonian H. We speak of them as the "in" and "out"
states |α〉in and |β〉out, when they fulfill the formal conditions2

e−iHt|α〉in = e−iH0t|α〉0 for t→ −∞, (1.3)
e−iHt|β〉out = e−iH0t|β〉0 for t→ +∞, (1.4)

1To be manifest Lorentz invariant, we choose the Heisenberg picture, in which states do not change
with time.

2Correctly, one has to work with well-behaved superpositions of states (wave-packets).
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

stating that when we observe3 |α〉in, |β〉out at times t→ −∞, t→ +∞, we encounter
the free particles described by the labels α and β. Now, we can define the object of
interest, the probability amplitude for the transition α→ β,

Sβα = out〈β|α〉in = 0〈β|S|α〉0, (1.5)

which is one component of the general S-Matrix. Due to (1.3) and (1.4), the corre-
sponding S-operator is given by S = U(+∞,−∞), where

U(τ, τ0) = eiH0τe−iH(τ−τ0)e−iH0τ0 . (1.6)

Differentiating (1.6) with respect to τ , we find that it obeys the following differential
equation

i
d

dτ
U(τ, τ0) = HI(τ)U(τ, τ0), (1.7)

where HI(τ) = eiH0τ HI e
−iH0τ is formulated in the interaction picture. At this

stage, we can impose physical and sensible demands on the scattering matrix:

Poincaré-Invariance: In order to achieve a Poincaré4 invariant S-matrix, we as-
sume that we can write HI(τ) as a position space integral over a scalar5 density
HI(~x, τ),

HI(τ) =
∫
d3xHI(~x, τ) . (1.8)

Then, one can solve (1.7) and express the S-operator by

S = 1 +
∞∑

n=1

(−i)n

n!

∫
d4x1...d

4xn T {HI(x1)...HI(xn)} , (1.9)

which is known as the Dyson series. The solution (1.9) is almost in a manifest
Poincaré invariant form, except for the time-ordering6 of the Hamilton densi-
ties. Due to the definition of T , we can solve this issue by demanding that HI

commutes at all space-like points

[HI(x),HI(y)] = 0 for (x− y)2 < 0, (1.10)

which is referred to as a causality condition. Note, that throughout this thesis,
we use the signature (+,−,−,−) for the Minkowski metric ηµν .

3The operators e−iHt and e−iH0t perform a time-translation of the observer coordinate system.
4We refer to proper and orthochronous Lorentz-transformations Λµ

ν with additional space-time
translation aµ, such that coordinates transform by x′µ = Λµ

νxν + aµ.
5Given a unitary Poincaré transformation U0(Λ, a), this states U0(Λ, a)H(x)U−1

0 (Λ, a) = H(Λx+a).
6For n = 2, the definition is T {HI(x1)HI(x2)} ≡ θ(x0

1 − x0
2)HI(x1)HI(x2) + θ(x0

2 −
x0

1)HI(x2)HI(x1). The cases n > 2 can be generalized in an obvious way.
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1.1. BASIC PRINCIPLES

Unitarity: Beginning with a state |α〉 at t→ −∞, the probability to find it, after
the scattering process, in any other state at t→ +∞ must sum up to 1,

1 =
∑

β

Sβα =
∑

β

0〈β|S|α〉0 ⇒ S†S = 1, (1.11)

which leads to a unitary S-operator. Together with (1.7), this means that the
time-evolution operator is unitary and therefore H must be hermitian. This
makes HI a real scalar density.

Cluster Decomposition Principle: Distant experiments should lead to uncorre-
lated results. From this statement one can reason (chapter four in [2]), that
it is sensible to construct HI out of creation and annihilation field-operators.
This leads one to use quantum fields

ψl(x) =
∑

σ

∫
d3p

(2π)32p0

[
e−ipxul(~p, σ)a(~p, σ) + vl(~p, σ)eipxvl(~p, σ)ac†(~p, σ)

]
,

(1.12)

where a(~p, σ) is an annihilation operator for particles, while ac†(~p, σ) creates
antiparticles. The coefficients ul and vl depend on the representation of the
Lorentz group. Concerning the SM fields, we will encounter scalars (ul = vl =
1) , vectors (ul = uµ, vl = vµ) and Dirac spinors (ul = uα, vl = vα).

Typically, one formulates quantum field theories in terms of Lagrangians, since this
has advantages concerning the implementation of further internal symmetries. When
we decompose the Lagrangian L = L0 + LI , we can effectively replace HI = −LI in
(1.9).

In order to fulfill the above-mentioned demands on the S-matrix7, the Lagrangian
must be hermitian, Lorentz invariant and has to be constructed out of quantum
fields. In the past, people further demanded the criterion of renormalizability that
effectively reduced the number of possible terms in L. Although this viewpoint has
changed during the last three decades, we repeat the steps of reasoning and the idea
behind renormalization in general, by giving a short example.

Renormalization

Nowadays, we associate with each quantum field theory an energy cutoff Λ, up
to which the theory is assumed to be valid. This gives us a natural regulator to
cutoff ultraviolet infinities, that would arise from integration over the complete four-
momentum space inside loops of Feynman diagrams. The idea of renormalization
is then to express all observable quantities like cross sections or decay amplitudes

7The first part of this section just intended to repeat the basic principles and to motivate the use
of quantum fields. There are still some caveats in the line of reasoning, that are discussed in [3].
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

in terms of physical parameters, like masses or couplings. But, these are not the
so called "bare" parameters that appear in the Lagrangian. For instance, we can
consider the (partial) QCD Lagrangian

LB = q̄B(iγµ∂µ −mB)qB − gs,B q̄Bγ
µλa

2
qB G

a
B,µ, (1.13)

where the subscript B labels the bare quantities like the quark field qB, the mass
mB, the strong coupling gs,B and the gluon field GB. Quantum corrections in form
of loop diagrams will shift these parameters. As an example, we want to consider the
one-loop self energy diagram of the quark in fig. 1.1. We know, that this diagram
exhibits a singularity when one does not cutoff the momentum integration in the
loop. But, instead of using a sharp cutoff as a regulator, we make use of dimensional
regularization, where the dimension of space-time is slightly changed to 4− 2ε with
ε � 1. This alters the canonical mass dimension of the quark fields and the gluon
field, such that we have to introduce an energy scale µ to render the interaction in
(1.13) with the correct dimension. The renormalized or physical quantities can then
be defined via

qB = Z
1/2
2 q, Ga

µ,B = Z
1/2
3 Ga

µ, gs,B = Zgµ
εgs, mB = Zmm, (1.14)

where Z2, Z3, Zg and Zm are called renormalization constants. With these, we can
decompose LB into a renormalized Lagrangian LR and a counter-term Lagrangian
L(1)

CT ,

LR = q̄(iγµ∂µ −m)q − gsµ
ε q̄γµλa

2
q Ga

µ (1.15)

L(1)
CT = (Z2 − 1)q̄iγµ∂µq − (Z2Zm − 1)mq̄q − (ZgZ2Z

1/2
3 − 1)gsµ

ε q̄γµλa

2
q Ga

µ

(1.16)

such that LB = LR+L(1)
CT . This procedure is referred to as the counter-term method.

Now, we can calculate the self-energy diagram using LR and then add the tree level
contribution coming from LCT , yielding [4]

−iΣab(p) = g2
s

12π2ε
(−/p+ 4m)δab + [(Z2 − 1)/p− (Z2Zm − 1)m]δab + finite terms .

(1.17)

We see, that we can absorb the appearing singularities (for ε→ 0) by adjusting the
renormalization constants Z2 and Zm,

Z2 = 1− g2
s

12π2ε
+O(g4

s), Zm = 1− g2
s

4π2ε
+O(g4

s) . (1.18)

So, by redefining the quark field and the mass, we obtain a finite expression for the
self-energy diagram. Furthermore, the counter-term in (1.16) is sufficient and does
not involve new sorts of operators, than are already present in LB.
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1.2. THE SM LAGRANGIAN

.
.

.k←−

.p−→ .p−→

Figure 1.1.: Quark self-energy graph.

In general, when proceeding with a two loop diagram, one has to calculate the
relevant diagram using LR +L(1)

CT and then construct a new counter-term L(2)
CT , that

cancels appearing singularities. Iterating this procedure for arbitrary loop orders,
one speaks of a renormalizable theory when all introduced counter-terms L(n)

CT involve
the same operators as appear in LB. A necessary condition can be inferred by using
power counting of the internal momenta in a Feynman diagram. It turns out [5], that
operators Qi with canonical mass dimension greater than four lead to divergencies
in Feynman diagrams that can not be absorbed by counter-terms having the same
structure as LB.

In case of D space-time dimensions, the necessary condition for renormalizability
can be expressed as [Qi] ≤ D. When we write each term in the Lagrangian as giQi

with coupling gi, this can be transformed in a statement about the coupling. In
natural units, ~ = c = 1, the action S =

∫
dDxL(x) is dimensionless, therefore the

Lagrangian must have mass dimension D, [L] = D. Thus, it is necessary that the
coupling has no negative canonical mass dimension, [gi] ≥ 0.

For a long time, one demanded that the renormalizability condition [gi] ≥ 0 must
be fulfilled by any realistic quantum field theory. The reason given is that the new
counter-terms (infinitely many) introduce new couplings, that have to be measured
in experiments and therefore spoil the predictivity of the theory. But, this viewpoint
has changed due to the interpretation of QFTs as effective field theories (EFTs)
rather than fundamental theories, where one would set Λ → ∞. In fact, an EFT
is less but still predictive since each non-renormalizable operator gets suppressed by
powers of the cutoff Λ, effectively reducing its contributions on physical processes
with energies E � Λ. But before elucidating the concept of EFTs (in 1.4), we
proceed with the construction of the SM Lagrangian .

1.2. The SM Lagrangian

First, we need to specify the quantum field content to start with. Concerning the
matter fields, we introduce spin zero (Higgs field) and spin 1/2 (quarks, leptons)
fields and assign them quantum numbers under the global SM group

GSM = SU(3)c × SU(2)L × U(1)Y , (1.19)

7



CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

that are listed in tab. 1.1. At this stage, we have to write down all terms, constructed
from the fields, that form real Lorentz scalars and that are singlets under the global
SM group. But, we further need to include force mediating particles, which have spin
one. This can be done by demanding all terms to be locally gauge invariant, enhanc-
ing GSM to a gauge group. With these requirements, the most general Lagrangian
is an infinite sum of operators Qi times coefficients Ci,

L =
∞∑

i=0
CiQi = C0 + LSM +

∑
{i|[Qi]≥5}

CiQi (1.20)

The first term is just a constant and has no physical meaning as long as we do not
include gravity. We will say more about this in section 1.4. The second part in (1.20)
contains all operators with mass dimension8 [Qi] ≤ 4 and is what we usually refer to
as the SM Lagrangian LSM. We restrict our discussion here to this selection of opera-
tors, since higher dimensional operators with [Qi] ≥ 5 are suppressed, see section 1.4.

Focusing on the SM Lagrangian, the strategy is to write down all terms with sym-
metry invariant operators of dimension [Qi] ≤ 4. For the next steps, it is convenient
to divide LSM into four parts

LSM = LFS + LGBS + LYS + LHS, (1.21)

denoted as the fermion (FS), gauge boson (GBS), Yukawa (YS) and Higgs (HS)
sector. Up to this stage, (1.21) does not contain any mass terms for the fermions or
gauge bosons. A solution can be provided by the Higgs field Φ, taking a non-zero
vacuum expectation value 〈0|Φ|0〉, which is known as the Higgs mechanism. Fur-
thermore, LSM is augmented by a gauge-fixing part LGF and Faddeev-Popov ghosts
in LFPG, which have to be included when properly quantizing gauge fields.

Based on this overview, we will go step by step through the terms and mechanisms
in the following subsections.

Fermion Sector

The Lorentz group admits two inequivalent representations for describing spin 1/2
particles. We denote the corresponding (1/2, 0) Weyl spinor by χf and the (0, 1/2)
spinor by ξf , which are both two-component objects. Instead of working with them
directly, we use a four component version

fL =

χf

0

 , fR =

 0

ξf

 , (1.22)

with a suitable notation, that is adjusted to construct Dirac spinors later on. But
a priori, fL and fR describe two distinct fermion particles. Therefore we can assign

8The SM is defined on four-dimensional space-time, so D = 4.
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1.2. THE SM LAGRANGIAN

SM Fields SU(3)c SU(2)L U(1)Y I3 Qe

(uL, dL), (cL, sL), (tL, bL) 3 2 1/6 (1/2,−1/2) (2/3,−1/3)
uR, cR, tR 3 1 2/3 0 2/3
dR, sR, bR 3 1 −1/3 0 −1/3

(νeL, eL), (νµL, µL), (ντL, τL) 1 2 1/6 (1/2,−1/2) (0,−1)
eR, µR, τR 1 1 2/3 0 −1

Φ = (Φ1,Φ2) 1 2 1/2 (1/2,−1/2) (1, 0)

Gauge Fields Ga
µ W i

µ Bµ

Table 1.1.: Quantum numbers of the SM fields. The fermion fields are ordered in genera-
tions/families. The SU(2)L eigenvalues of τ3 = σ3/2 are denoted by the isospin
I3 component, while Qe represents the electric charge in units of e = |e|.

them different quantum numbers under GSM, as listed in tab. 1.1. We collect the
left-chiral SU(2)L (weak isospin) quark and lepton doublets and singlets9 by

Qn
L =

uL

dL

 ,
cL

sL

 ,
tL
bL

 , En
L =

νeL

eL

 ,
νµL

µL

 ,
ντL

τL

 , (1.23)

un
R = uR, cR, tR, dn

R = dR, sR, bR, en
R = eR, µR, τR, (1.24)

with "generation" or "family" index n = 1, 2, 3. Hence we can construct the gauge
invariant kinetic Lagrangian

LFS = Q̄n
Li /DQ

n
L + Ēn

Li /DE
n
L + ūn

Ri /Du
n
R + d̄n

Ri /Dd
n
R + ēn

Ri /De
n
R, (1.25)

where /D ≡ Dµγ
µ and Q̄L ≡ (QL)†γ0. The covariant derivate Dµ ensures that each

term in LFS stays invariant under local transformation of GSM. In general, it is given
by

Dµ = ∂µ − igW i
µτ

i − ig′BµY − igsG
a
µT

a, (1.26)

where Y denotes the hypercharge of the matter field (Dµ is acting on) and τ i =
σi/2, T a = λa/2 are the generators10 of the SU(2)L and SU(3)c groups respectively.
It is further understood, that when Dµ is acting on any field ψ, it should only include
the relevant gauge boson terms, where ψ has nontrivial quantum numbers under the
gauge group.

9Concerning the neutrinos, we do not include a right-chiral one, since it would be a singlet under
each of the groups and therefore does not interact with any of the other fields.

10They fulfill the commutator relation [τ i, τ j ] = iεijkτk and [T a, T b] = ifabcT c. The 2 × 2 Pauli

matrices are given by σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, while we use a common

representation [5] in case of the Gell-Mann matrices λa, a = 1, 2, ..., 8.

9



CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

For instance, we can consider the quark doublet Qn
L, that transforms nontrivially

under the complete SM group, therefore

DµQ
n
L =

(
∂µ − igW i

µτ
i − ig′BµYQL

− igsG
a
µT

a
)
Qn

L, (1.27)

with hypercharge YQL
= 1/6. Note, that we usually omit to write the SU(2)L and

SU(3)c indices for the sake of clarity11, while keeping in mind that τ i acts in isospin
space and T a in color space. To guarantee that the term Q̄L /DµQL in (1.25) stays
invariant under the local transformations

UI(x) = eiθi
L(x)τ i

, UY (x) = eiθY (x)Y , Uc(x) = eiθa
c (x)T a

, (1.28)

with space-time dependent functions {θi
L(x)}, θY (x) and {θa

c (x)}, we have to demand
that DµQL transforms like the field itself under each of the transformations, so
in general D′

µQ
′
L = U(x)DµQL. This can only be accomplished, when the gauge

fields do also transform in a suitable way. But instead of considering the finite
transformations, it is more instructive to work out the behavior for infinitesimal
transformation θi

I , θY , θ
a
c � 1, yielding then

Bµ(x) U(1)Y−−−−→ B′
µ(x) = Bµ(x) + 1

g
∂µθY (x), (1.29)

W i
µ(x) SU(2)L−−−−→W ′i

µ (x) = Wµ(x) + 1
g′∂µθ

i
L(x) + iεijkW j

µ(x)θk
L(x), (1.30)

Ga
µ(x) SU(3)c−−−−→ G′a

µ (x) = Gµ(x) + 1
gs
∂µθ

a
c (x) + ifabcGb

µ(x)θc
c(x) . (1.31)

Worth mentioning is that Bµ transforms as a singlet under the global U(1)Y , which
states that it carries no charge under this group (abelian case). A consequence is
that there is no restriction on the coupling strength between Bµ and the matter
fields, which is the reason why we can assign them different hypercharge values in
tab. 1.1. This is different for the non-abelian SU(2)L and SU(3)c groups, where
W i

µ and Ga
µ transform in their respective adjoint representations12. For example, Ga

µ

must couple with equal strength gs (strong coupling) to each quark flavor, otherwise
gauge invariance is lost.

Coming back to LFS, there are no more terms that respect the symmetry require-
ments. We may think of Lorentz invariant Majorana or Dirac mass terms

1
2
mf (χT

f iσ2χf + h.c.) or −mf f̄f = −mf (f̄LfR + f̄RfL), (1.32)

11Otherwise, (1.27) reads

(DµQn
L)i,α =

(
∂µδijδαβ − igW k

µ τk
ijδαβ − ig′BµYQL δijδαβ − igsGa

µT a
αβδij

)
(Qn

L)j,β ,

with isospin indices i, j = 1, 2 and color indices α, β = 1, 2, 3.
12The generators of the adjoint representation can be constructed from the structure constants. In

case of SU(2) and SU(3), we have (τ j
adj)ik = iεijk and (T b

adj)ac = ifabc respectively.
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1.2. THE SM LAGRANGIAN

but both are not singlets under SU(2)L or U(1)Y transformations. As mentioned
earlier, we therefore introduce the Higgs field and make use of the related Higgs
mechanism, which will be explained further below.

Gauge Boson Sector

Missing are the kinetic terms for the gauge bosons. They are given by the field
strength tensors

Bµν = ∂[µBν], W i
µν = ∂[µW

i
ν] + g′εijkW j

µW
k
ν , Ga

µν = ∂[µG
a
ν] + gsf

abcGb
µG

c
ν ,

(1.33)

where the bracket [...] denotes an anti-symmetrization of the enclosed indices, for
instance ∂[µBν] = ∂µBν − ∂νBµ. With these, we can construct the following gauge
invariant terms

LBS = −1
4
W i

µνW
iµν − 1

4
BµνB

µν − 1
4
Ga

µνG
aµν

+ g′2 ΘW

32π2W
i
µνW̃

iµν + g2 ΘB

32π2BµνB̃
aµν + g2

s

ΘG

32π2G
a
µνG̃

aµν , (1.34)

where W̃µν , B̃µν , G̃µν are the dual field strengths, in general defined by F̃µν ≡
1
2εµνρσF

ρσ. Although each of the last three CP violating13 terms in (1.34) can
be rewritten as a total derivative of a current, this does not imply a priori that they
give no contribution under the action integral. In fact, the answers are subtle and
touch the subjects of anomalies, instantons and topology of gauge transformations
[6], [5]. However, it turns out that ΘW and ΘB are not physical, while the strong ΘG

term is observable by measuring the electric dipole moment of the neutron (nEDM),
yielding an upper bound of ΘG . 10−11.

Further terms in (1.34) are not allowed, so we end up with massless spin one gauge
bosons. The Higgs mechanism will also explain the occurrence of mass terms for the
experimentally observed massive W± and Z bosons.

Gauge Fixing and Faddeev-Popov Ghosts

The freedom to perform gauge transformations without rendering the Lagrangian
LSM expresses, that the gauge fields are described by more degrees of freedom (DOF)
than physical ones. While a Lorentz vector field admits four components, we know
that massless and massive gauge bosons have two respectively three DOF according
to their number of polarizations. For instance, we can consider the gluon field Ga

µ

and make use of the path integral formalism14. Restricting on the free-field part, the
13This is due to the pseudotensor εµνρσ, that flips its sign under a parity transformation.
14This formalism presents another way, besides the operator formalism, to quantize the theory and

to develop perturbation theory. Note, that the path integral formalism involves classical fields
for the bosons, while fermionic fields are represented by (anti-commuting) Grassmann valued
fields.
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

generating functional reads

ZG
0 [J ] =

∫ [
dGa

µ

]
e

i
∫

d4x

(
− 1

4 ∂[µGa
ν]∂

[µGaν] + Ja
µAaµ

)
, (1.35)

where Ja
µ(x) are so called Schwinger sources15, introduced to create and destroy

gluon particles. We can rewrite the gluon kinetic part in (1.35) to bring it into a
bilinear form,∫

d4x

(
−1

4
∂[µG

a
ν]∂

[µGaν]
)

= 1
2

∫
d4xGa

µ

[
δab(ηµν∂α∂α − ∂µ∂ν)

]
Gb

ν , (1.36)

making use of a partial integration. The usual way to obtain the propagator is to
perform a Gaussian integration of (1.35), for which we need to determine the inverse
of the differential operator standing in between the fields Ga

µ (in (1.36)), such that

δab(ηµν∂α∂α − ∂µ∂ν)DG,bc
νρ (x− y) = δac g

µ
ρ δ

4(x− y) . (1.37)

One can show that the inverse does not exist, e.g. the operator has a zero eigenvalue
when acting on ∂νg(x) for some smooth function g(x).

Taking another view, gauge invariance leads to an overcounting of field configura-
tions in Z[J ], that are related by gauge transformations. A procedure to reformulate
the generating functional and divide out the infinite extra "volume" has been pro-
posed by Faddeev and Popov [7]. Following their derivation, we can fix a gauge by
adding the term

− 1
2ξG

Ga
µG

aµ (1.38)

to the Lagrangian with the gauge fixing parameter ξG and drop the redundant degrees
of freedom in the functional measure. While the interaction in the abelian case does
not change effectively, one has to introduce ghost fields, described by anti-commuting
Grassmann fields ca(x) in the non-abelian case (see [5] for details). These fields
violate the spin-statistic theorem and are therefore unphysical (non-observable), but
need to be included in calculations, since they occur in internal loops. For our gluon
example, the Faddeev-Popov Lagrangian reads

LG
FPG = c†

a∂
µ[δab∂µ − gsfabcA

c
µ]cb . (1.39)

In general, ghost fields couple only to the (non-abelian) gauge fields. However, in
this thesis ghosts are not needed in the calculations and we refer to [8] for a complete
citation within the Standard Model.
15When we perform a functional differentiation of Z[J ], we obtain the Green’s functions that rep-

resent on-shell Feynman diagrams.
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1.2. THE SM LAGRANGIAN

Yukawa Sector

When we introduce the Higgs field Φ, which is a scalar SU(2)L doublet with YΦ = 1/2
(see tab. 1.1), one can write down Yukawa terms involving quark, lepton doublets
and singlets. They are included in

LYS = −Y mn
d Q̄m

L Φdn
R − Y mn

u Q̄m
L (iσ2Φ∗)un

R − Y mn
e Ēm

L Φen
R + h.c. , (1.40)

where m,n = 1, 2, 3 represent generation indices and Y u, Y d, Y e are general, com-
plex 3 × 3 matrices. Now, assume that the field operator Φ develops a nonzero
vacuum expectation value (VEV) 〈0|Φ|0〉 ≡ 〈Φ〉 6= 0, then it is sensible to expand
the Higgs field around this ground state. We will see below, that for the specific
value of

〈Φ〉 = 1√
2

0

v

 , (1.41)

into (1.40), we obtain Dirac mass terms for the quarks and charged leptons. But
first, we must discuss how such a nonzero VEV can be realized.

Higgs Sector & Mechanism

The Higgs Lagrangian is given by

LHS = (DµΦ)†(DµΦ)− V (Φ) with V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 . (1.42)

Note, that the potential V is the most general potential respecting gauge symme-
try and renormalizability. Due to the hermiticity condition, the couplings µ2 and
λ must be real. In order to allow for the VEV in (1.41), the potential must fulfill
some requirements. It must be bounded from below to admit a stable ground state,
enforcing λ > 0. However the sign of µ2 is arbitrary, but we only obtain a nonzero
minimum for µ2 > 0, which leads to the well known Mexican hat potential. Extrem-
izing the potential, we find minima for the values |〈Φ〉| = µ/

√
2λ, so (1.41) is just

one possible VEV with v = µ/
√
λ.

It is sensible to describe our theory out of the ground state, so we must expand Φ
around its vacuum expectation value 〈Φ〉. As a consequence, the symmetry proper-
ties of our Lagrangian LΦ depend on the transformation behavior of 〈Φ〉 under the
SM gauge group. While the VEV is obviously not affected by the SU(3)c group,
it transforms nontrivially under infinitesimal SU(2)L and U(1)Y gauge transforma-
tions,

1√
2

0

v

 SU(2)L×U(1)Y−−−−−−−−−−→
[
1 + θi

L(x)σ
i

2
+ θY (x)1

2

] 1√
2

0

v

 (1.43)

13



CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

We see that 〈Φ〉 stays invariant only for θ1
L = θ2

L = 0 and θ3
L = θY , giving rise to

the unbroken electric charge generator Qe = τ3 + 1
2 . Otherwise, we encounter three

linear independent generators I1 ≡ τ1, I2 ≡ τ2 and τ3 − 1
2 , that do not leave the

VEV invariant and are therefore called broken symmetry generators. One refers to
this mechanism as a spontaneous symmetry breakdown (SSB) to the electromagnetic
U(1)Qe group,

SU(2)L × U(1)Y
SSB−−→ U(1)Qe . (1.44)

Accompanied with this breakdown is the existence of massless spinless bosons for
each broken generator, which is a general statement of the Goldstone theorem in
case of global and continuous symmetry groups. To see this in our case, we can
parametrize Φ by

Φ(x) = 1√
2

 φ1(x) + iφ2(x)

v + φ3(x) + iφ4(x)

 , (1.45)

with real-valued scalar fields φ1, φ2, φ3 and φ4. Then we can develop the potential
around the VEV, yielding up to the second order

V = V
∣∣∣
〈Φ〉

+ 1
2
Mij

∣∣∣
〈Φ〉
φiφj + ..., with Mij ≡

∂V

∂φi∂φj
= diag(0, 0, 2λv2, 0),

(1.46)

where the first order term vanishes, since 〈Φ〉 is an extreme value. We find, that
the mass matrix (Hessian) Mij has three zero eigenvalues and one mass eigenvalue
mh =

√
2λv for the h(x) ≡ φ3(x) field. This massive scalar field describes the Higgs

particle.

Note, that the potential V admits in fact a higher (accidental) global symmetry
SO(4), which has six generators. The VEV breaks this group to a remaining SO(3)
symmetry, that has three generators. Finally, we end up with the same number of
three broken generators, responsible for the three zero eigenvalues of M.

Since we deal with gauge groups in the SM, the fields φ1, φ2, φ4 do not represent
physical particles. They can be eliminated by a suitable gauge transformation (called
the unitary gauge). Still, their degrees of freedom do not vanish, but are absorbed
by the previously massless gauge bosons (two DOF), that will become massive (three
DOF) after SSB. The derivation of the mass terms is performed next.

Gauge Boson Masses

Since the Higgs field couples only to the SU(2)L and U(1)Y gauge fields (YΦ = 1/2),
the covariant derivative (1.26) can be written in a convenient way,

DµΦ =
[
∂µ − igW 1

µτ
1 − igW 2

µτ
2 − i(gW 3

µτ
3 + g′

2
Bµ)

]
Φ . (1.47)

14



1.2. THE SM LAGRANGIAN

With this expression at hand, we can insert the VEV (1.41) into the kinetic part of
the Higgs Lagrangian in (1.42), yielding

(DµΦ)†(DµΦ)
∣∣∣
〈Φ〉

= v2g2

8
[
(W 1

µ)2 + (W 2
µ)2]+ v2

8
(−gW 3

µ + g′Bµ)2 . (1.48)

The masses of the two W bosons W 1
µ and W 2

µ can be directly read off, yielding

m2
1 = m2

2 = v2g2

4
, (1.49)

while the mixed term on the right-hand side of (1.48) has to be diagonalized first.
We can rewrite this term by

v2

8
(−gW 3

µ + g′Bµ)2 = v2

8

(
W 3

µ Bµ

) g2 −gg′

−gg′ g′2

W 3
µ

Bµ


= 1

2

(
Zµ Aµ

)m2
Z 0

0 0

Zµ

Aµ

 = 1
2
m2

ZZµZ
µ, (1.50)

where we used in the penultimate step the orthogonal transformations

Zµ = cos θWW 3
µ − sin θWBµ, Aµ = sin θWW 3

µ + cos θWBµ, (1.51)

with the mixing angle tan θW = g′/g, which is generally referred to as the Weinberg
angle. After diagonalization, we obtain a massive and a massless boson

m2
Z = v2(g2 + g′2)

4
, m2

A = 0 . (1.52)

which are identified with the Z boson and the photon A. The missing mass term for
the photon is in fact a consequence of the SSB in (1.44), after which the Lagrangian
LSM remains still invariant under local phase-transformations U(1)Qe . Here, concern-
ing the Higgs field, the electric charge generator reads Qe = τ3 + YΦ = diag(1, 0),
whose eigenvalues denote that Φ1 is positively charged and Φ2 is the neutral com-
ponent. It is further convenient to rewrite

W 1
µτ

1 +W 2
µτ

2 = 1√
2
(
W+

µ τ
+ +W−

µ τ
−), W±

µ = 1√
2

(W 1
µ ∓W 2

µ), (1.53)

since each of the matrices τ± = τ1±τ2 is closed under commutation with the charge
generator16. Finally, we can express the general covariant derivative (1.26) in terms
of mass eigenstates and identify e ≡ g′ cos θW , yielding

Dµ = ∂µ − i
g√
2

(W+
µ τ

+ +W−
µ τ

−)− i g

cos θW
Zµ
(
τ3 − sin2 θWQe

)
− ieAµQe − igsG

a
µT

a . (1.54)
16This means [τ+, Q] = −τ+ and [τ−, Q] = τ−.
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

The electric charge generator is given for SU(2)L doublets by Qe = τ3 + Y and
in case of singlets by Qe = Y . For instance, Qe = diag(2/3,−1/3) for the quark
doublets Qn

L. Inserting (1.54) into LFS, we obtain

LFS = Q̄n
Li/∂Q

n
L + Ēn

Li/∂E
n
L + ūn

Ri/∂u
n
R + d̄n

Ri/∂d
n
R + ēn

Ri/∂e
n
R

+ g(W+
µ J

+µ
W +W−

µ J
−µ
W + ZµJ

µ
Z) + eAµJ

µ
em, (1.55)

with the charged and neutral weak currents J±µ
W , Jµ

Z and the electromagnetic current
Jµ

em, given by

J+µ
W = 1√

2
(
ν̄n

Lγ
µen

L + ūn
Lγ

µdn
L

)
, J−µ

W =
(
J+µ

W

)†
, (1.56)

Jµ
Z = 1

cos θW

[
ν̄n

Lγ
µ
(1

2

)
νn

L + ēn
Lγ

µ
(
−1

2
+ sin2 θW

)
en

L + ēn
Rγ

µ
(
sin2 θW

)
en

R

+ ūn
Lγ

µ
(1

2
− 2

3
sin2 θW

)
un

L + ūn
Rγ

µ
(
−2

3
sin2 θW

)
un

R

+ d̄n
Lγ

µ
(
−1

2
+ 1

3
sin2 θW

)
dn

L + d̄n
Rγ

µ
(1

3
sin2 θW

)
dn

R

]
, (1.57)

Jµ
em = ēγµ(−1)e+ ūγµ

(
+2

3

)
u+ d̄γµ

(
−1

3

)
d . (1.58)

Note, that all fermion fields in (1.55) are still gauge eigenstates. Parity P and charge
C is violated in both weak currents, since the interactions do not couple with equal
strength between left-chiral and right-chiral fields. A maximal violation occurs in
the charged sector and for the neutrinos, since here are only left-chiral particles
(right-chiral antiparticles) involved. The combined operation CP is conserved by
both weak interactions, but this will change when we rotate to the mass eigenstates
of the fermion fields.

Fermion Masses

Returning to our Yukawa terms in (1.40), we can insert the VEV (1.41) and obtain

LYS 3 −
v√
2
Y mn

d d̄m
L d

n
R −

v√
2
Y mn

u ūm
L u

n
R −

v√
2
Y mn

e ēm
L e

n
R + h.c. , (1.59)

where the fermion fields are gauge eigenstates. To work with mass eigenstates, we
have to diagonalize the 3 × 3 complex Yukawa matrices Y u, Y d and Y e. This can
be done via biunitary transformations [5], i.e. for each of the matrices there exist
unitary matrices Uu, Ud, U e and W u, W d, W e such that

U †
uY uW u = diag(yu, yc, yt), U †

dY dW d = diag(yd, ys, yb),
U †

eY eW e = diag(ye, yµ, yτ ), (1.60)

with real diagonal entries denoted as Yukawa couplings. So, when we transform to
the quark and lepton mass eigenstates via

uL → Uu · uL, dL → Ud · dL, eL → U e · eL, νL → U e · νL,

uR →W u · uR, dR →W d · dR, eR →W e · eR, (1.61)
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1.2. THE SM LAGRANGIAN

their masses are given by the VEV of the Higgs field and the Yukawa couplings,

mq = yq v√
2

for q = u, d, c, s, t, b , ml = yl v√
2

for l = e, µ, τ . (1.62)

Flavor Content

The neutral currents are invariant under the transformations in (1.61), therefore
Jµ

Z , J
µ
em remain the same with fermion fields in their mass basis. Affected are the

charged quark currents, J+µ
W in (1.56) gets replaced by

J+µ
W = 1√

2
(
ν̄n

Lγ
µen

L + (U †
uUd)mnūm

L γ
µdn

L

)
. (1.63)

The unitary 3× 3 matrix in between the up- and down-type quarks is termed as the
CKM matrix after Cabibbo, Kobayashi and Maskawa [9], [10],

V = U †
uUd =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.64)

which is in general not diagonal. Since, its non-diagonal components can allow for
quark transitions that change flavor but not the electric charge, we speak of the
Flavor-Changing Neutral Currents (FCNCs) J+µ

W and J−µ
W . For instance, when de-

scribing the transition from a down- to an up-quark, we have to use for the Feynman
vertex rule the entry Vud, and V ∗

ud in case of the reverse transition. It is convenient
to parametrize V in a way, that only includes physical degrees of freedom. Any
complex 3 × 3 matrix has 18 real parameters, while imposing the unitarity condi-
tion (V †V )mn = δmn reduces them to three rotation angles and six complex phases.
Since the quark phases are unphysical, we can redefine them

um → eiφumum, dn → eiφdndn ⇒ Vmn → e−i(φum −φdn )Vmn, (1.65)

such that their phase differences eliminate five of the CKM phases. This leaves us
with one physical complex phase, which is the only parameter that violates CP in
the SM. This can be seen by means of the charged weak currents for the quarks,
which transform under a CP transformation by

ūLγ
µV dLW

+
µ + d̄Lγ

µV †uLW
−
µ

CP−−−→ d̄Lγ
µV †∗uLW

−
µ + ūLγ

µV ∗dLW
+
µ . (1.66)

Both sides do not coincide, unless V is real or the physical phase vanishes. One
common parametrization, which is also used by the Particle Data Group (PDG)
[11], is given by

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.67)
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where sij ≡ sin θij and cij ≡ cos θij and δ is the CP violating phase. To bring (1.64)
into this standard parametrization, we can use four phase rotations in (1.65) to make
Vud, Vus, Vcb and Vtb real and the remaining one to adjust the condition

ImVub =
√
|Vud|2 + |Vus|2
|Vcb|

ImVcs . (1.68)

Experimentally, one finds hierarchies s12 � s23 � s13, therefore it is convenient to
define

s12 ≡ λ, s23 ≡ Aλ2, s13 ≡ Aλ3(ρ− iη), (1.69)

and to expand (1.67) in terms of λ ≈ 0.23, yielding the approximate Wolfenstein
parametrization [12],

V =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (1.70)

This representation highlights the hierarchical structure of the CKM matrix. Here,
we see that a CP violation is associated with η 6= 0. Instead of working with ρ and
η, it is convenient to work with convention independent quantities ρ̄ and η̄, that are
defined by

ρ̄+ iη̄ = −V
∗

ubVud

V ∗
cbVcd

, (1.71)

and related to the Wolfenstein parameters via ρ̄ = ρ(1−λ2/2) and η̄ = η(1−λ2/2) up
to order O(λ4). The experimental values for λ, A, ρ̄, η̄ can be found in the appendix
B.1.

Parameter Counting

We have shown explicitly above, that we can infer from the three Yukawa matrices
13 physical real parameters, composed of nine quark/lepton masses and four param-
eters describing the CKM matrix. The same result can also be achieved by global
symmetry considerations, see [13] and [14]. When we neglect the Yukawa Lagrangian
in LSM, we can perform global unitary transformations of the quark/lepton SU(2)L

doublets and singlets separately in generation space17, leading to the enlarged sym-
metry group

GY = U(3)QL
× U(3)uR × U(3)dR

× U(3)EL
× U(3)eR , (1.72)

which has 5× 9 = 45 generators. The corresponding transformation matrices can be
parametrized by 15 angles and 30 phases, denoted as NGY

= (15, 30). Now, we add

17For instance, the quark doublet transforms by Qm
L

U(3)QL−−−−−→ Umn
QL

Qn
L for UQL ∈ U(3)QL .
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LY and introduce the quark and lepton Yukawa matrices Y u,d,l, which are general
3× 3 complex matrices. They give rise to 27 new complex parameters, classified by
NY = (27, 27). As a consequence of adding the Yukawa terms, the symmetry of LSM
is reduced to simultaneous phase transformations of all quark fields and to separate
phase transformations of each lepton generation18, summarized by the subgroup

HY = U(1)B × U(1)e × U(1)µ × U(1)τ , (1.73)

with NHY
= (0, 4). The corresponding quantum numbers are the baryon number

(1/3 for each quark) and family lepton numbers (1 for e, µ, τ). They are in fact
accidental symmetries of LSM, since they have not been imposed a priori, when
constructing the SM Lagrangian. Now, we can use the NGY

−NHY
broken generators

to eliminate unphysical parameters in the Yukawa matrices. Finally, the remaining
physical parameters can be calculated to

Nphys = NY − (NGY
−NHY

) = (27, 27)− [(15, 30)− (0, 4)] = (12, 1), (1.74)

which distribute among the six quark masses, three charged lepton masses, three
mixing angles and the one CP violating phase of the CKM matrix19.

Including also the physical parameters in LFS, LBS and LHS, the SM relies on 18
physical parameters

• 3 gauge couplings: g, g′, gs

• 2 from Higgs sector: mh, v

• 13 from Flavor sector: (mu,mc,mt), (md,ms,mb), (me,mµ,mτ ), 3 mixing
angles and 1 CP violating phase,

that have to be adjusted properly to fit the experiments.

1.3. Concept of an Effective Field Theory
We start with a quantum field theory in D space-time dimensions, that incorporates
a fundamental energy scale Λ0

20. Being interested in the physics at some lower scale
E � Λ0, we choose a cutoff Λ < Λ0 and divide the fields φ of the theory into low-
and high-frequency modes

φ(x) = φL(x) + φH(x) . (1.75)

18The SM Lagrangian stays invariant under the quark transformations q
U(1)B−−−−→ ei 1

3 θB q and lepton
transformations l

U(1)l−−−→ eiθl l for l = e, µ, τ .
19Repeating the considerations with two fermion generations, leads to Nphys = (12, 12) − ((5, 15) −

(0, 3)) = (7, 0), including four quark and two lepton masses and one Cabibbo angle for quark
mixing.

20Good expositions about the concept of EFTs and its relation to renormalization can be found in
[15], [16], [17] and [18].
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

The field φL contains the Fourier modes with frequencies w < Λ, while φH contains
the remaining modes with frequencies w > Λ. Since, we want to describe a low-
energy theory, the propagating particles must be described by low-frequency fields
φL. In terms of the path integral formalism, we therefore introduce only source fields
J(x) for φL, yielding the generating functional

Z[JL] =
∫

[dφL][dφH ] eiS(φL,φH)+i
∫

dDxJ(x)φL(x), (1.76)

where S(φL, φH) =
∫
dDxL(x) denotes the complete action. Consequently, we can

perform the integral over the high-frequency fields and shuffle their contribution into
a new effective (Wilsonian) action, defined by

eiSΛ(φL) ≡
∫

[dφH ]eiS(φL,φH) . (1.77)

This action SΛ(φL) depends explicitly on the choice of Λ, that separates the low- and
high-frequency modes. It involves an integration over φ-modes with w > Λ, therefore
as long as E � Λ one can expand (1.77) in terms of local operators composed of
light fields, yielding

SΛ(φL) =
∫
dDxLΛ

eff(x) with LΛ
eff(x) =

∞∑
i

Ci(Λ)Qi(φL(x)), (1.78)

which is referred to as the operator-product expansion (OPE). The effective La-
grangian LΛ

eff is then given by an infinite sum of local operators Qi multiplied by the
so called Wilson coefficients Ci. Note, that since the OPE depends on Λ, so do the
Wilson coefficients as well as the operators through the fields φL. Furthermore, each
operator Qi that respects the symmetry of the theory must appear in the sum (1.78).

At first sight, the infinite number of coefficients Ci seems to render the theory non-
predictive. But, this can be resolved, when we estimate the Wilson coefficients using
naive-dimensional analysis. By assumption, there is only one fundamental scale Λ0
that can be used to give each Wilson coefficient its corresponding mass dimension.
Defining γi ≡ −[Ci] ≡ [Qi] − D, we conclude that Ci = ciΛ−γi

0 with dimensionless
couplings ci. Unless there is a special mechanism at work (like a symmetry), we
expect that any dimensional number ci in our theory is of O(1). This is essentially
the statement behind the "naturalness principle". On the basis of this principle,
we can estimate the contribution of a given operator Qi to a process of low energy
E � Λ < Λ0. We expect

∫
dDxQi ∼ Eγi , so that the ith term in (1.78) is of order

ci

(
E

Λ0

)γi

=


O(1), γi = 0

� 1, γi > 0

� 1, γi < 0

, (1.79)
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1.4. THE SM AS AN EFT & MOTIVATION FOR NEW PHYSICS

which allows for a classification of operators. The main contributions arise from
relevant (γi < 0) and marginal (γi = 0) operators, while the series of irrelevant
(γi > 0) operators can be truncated depending on the precision goal of the calcula-
tion21. Thus, the low energy physics depends only on a finite number of couplings,
rendering it predictive.

1.4. The SM as an EFT & Motivation for New Physics

On the basis of the previous section, we can think of the SM as a low energy descrip-
tion of a more fundamental (unknown) theory with a characteristic energy ΛNP ∼ Λ0.
With this New Physics scale, we can write down the effective Lagrangian (compare
with (1.20))

Leff = c0 Λ4
NP + LSM +

∑
{i|γi≥1}

ci

Λγi
NP

Qi, (1.80)

where ci are dimensionless couplings and γi ≡ [Qi]− 4.

In spite of the notation, the irrelevant terms in (1.80) are in fact interesting,
since they can give us information about the primary theory. For instance, there
is only one dimension five operator that respects the symmetries of the SM. It is
given by22 (Ēn,c

L iσ2Φ)(En
Liσ2Φ) + h.c. with a coefficient, suppressed by one power

of ΛNP. When the Higgs field attains its VEV, this term gives rise to a Majorana
mass for the neutrinos, mν ∼ v2/ΛNP. Thus, the Standard Model does predict
neutrino masses and when comparing them with the experiment value, this would
imply ΛNP ∼ O(1014 GeV). This is also not far away from the grand unified theory
(GUT) scale, where the strong and electroweak gauge couplings approximately unify.

Another important energy scale is given by the Planck mass MPl ∼ 1019 GeV,
where gravity is expected to become strong, such that it can not be neglected in
particle interactions anymore. When we include gravity into the SM, we can think of
it as being the low energy theory of some quantum gravity theory with ΛNP ∼MPl.
Consequently, the first expansion term in (1.80) has a physical meaning, since it
contributes to the cosmological constant. Naturally, we expect it to scale like M4

Pl,
but this deviates by more than 120 orders of magnitude compared with the observed
value. This is known as the cosmological constant problem. So, on the basis of
the naturalness principle, we encounter a Hierarchy Problem (HP). Regarding LSM,
there are two further HPs, that strongly motivate the search for New Physics models:
21Here, we used the modern nomenclature for the classification. In the old-fashioned language, they

refer to super-renormalizable, renormalizable and non-renormalizable operators.
22Here, n refers to the generation index and En,c

L = iγ2(En
L)∗ is the conjugate of the lepton doublet

En
L. The given operator in the text is then both Lorentz and gauge invariant, but does break

the (accidental) lepton symmetry in (1.73).
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CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

Gauge Hierarchy Problem: Before EWSB, the Lagrangian LSM is composed of
marginal operators except for the (relevant) Higgs field mass term µ2Φ†Φ in
(1.42). Due to the naturalness principle, we expect a value of µ2 ∼ Λ2

NP.
Relating this to the Higgs mass, it states that the bare parameter mh,B =
2µ/
√
λ ∼ ΛNP scales with the New Physics energy. Being a bare parameter

in the Lagrangian, we have to consider quantum corrections to it. One loop
corrections from fermions or bosons turn out to be quadratically sensitive on

.

.

.h .h.f .W,Z, γ
.h

the cutoff scale (which is set to ΛNP), yielding a mass shift of ∆m2
h ∼ Λ2

NP.
Thus, we can only stabilize a low value of the (physical) Higgs mass m2

h =
(m2

h,B + ∆m2
h) ∼ (100 GeV)2, when finely tuning the counter-terms with high

precision. For instance, considering ΛNP ∼ MPl, one would have to tune two
numbers over 33 orders of magnitude.
So, the New Physics model should present a mechanism to explain the hierarchy
between ΛNP and the electroweak scale MEW ∼ v.

Yukawa Hierarchy Problem: The operators in LY are marginal ones, so we ex-
pect complex O(1) numbers for the components of the dimensionless Yukawa
matrices Y u, Y d and Y l. When we rotate into the mass basis, this must fur-
ther hold for the Yukawa couplings yqi and yli , that set the fermion masses
via (1.62). Concerning the quarks, they read mqi = yqiv/

√
2. While the top

quark coupling yt ∼ 1 is natural, the remaining couplings are several orders of
magnitude smaller according to the approximate mass ratios

md/ms/mb = 1/102/103 and mu/mc/mt = 1/103/105 . (1.81)

The SM does not give an explanation (mechanism) for these mass splittings.
Note, that in contrast to the Higgs mass, quantum corrections to the fermion
masses are at most logarithmically depending on the cutoff scale ΛNP. There-
fore, we are not confronted here with a fine-tuning problem. The reason lies in
the chiral gauge structure of the SM23.
Another manifestation of the hierarchies in the quark sector is given by the
pattern of the CKM matrix, see the Wolfenstein parametrization in (1.70),
which has components differing up to three orders in magnitude.

23In the limit of vanishing masses mf → 0, left- and right-chiral fermions in the SM are independent
non-interacting particles, prohibiting any non-zero mass corrections. Consequently, self-energy
loop diagrams are proportional to mf ln ΛNP (see [19]). Thus, it is the chiral gauge symmetry
that protects fermion masses from large corrections.
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1.4. THE SM AS AN EFT & MOTIVATION FOR NEW PHYSICS

Furthermore, we have no rationale for the unnatural small value for ΘG in (1.34)
or a viable mechanism to set it to zero. This is known as the strong CP puzzle.
Besides the above mentioned HPs, there are more open questions, e.g. what is dark
matter or dark energy and how can we provide a mechanism, that can account for
the baryon asymmetry in the universe.

Before ending this section and proceeding with the Randall-Sundrum Model, we
want to say some more words about the issue of fine-tuning, since it will play a major
role in the analysis of the εK problem:

Fine-tuning: Barbieri and Giudice introduce in [20] a measure for fine-tuning of an
observable O(ā), that depends on several parameters ā = (ai). They propose
to calculate the quantity

∆i(O, ā) ≡
∣∣∣∣ ai

O(ā)
∂O(ā)
∂ai

∣∣∣∣ , (1.82)

so that the percentage variation of one parameter ai leads to a ∆i times larger
variation of O(ā). For example, imposing ∆i < 10 means to tolerate cancella-
tions in O(ā) of at most one order of magnitude.
Let us calculate the fine-tuning measure for the one-loop top-quark contribu-
tion to the Higgs mass, where Λ shall denote the fixed momentum cutoff. Here,
the observable is

m2
h = m2

h,B + ∆m2
h(Λ, yt) with ∆m2

h(Λ, yt) = 3yt

4π2 Λ2 [8], (1.83)

and depends on the top-quark Yukawa coupling yt. Applying (1.82), we obtain
∆yt(m2

h, yt) = 2 ∆m2
h/m

2
h, which gives a huge fine-tuning value around 1033

in case of Λ ∼ MPl. Taking another point of view, we can also demand ∆yt

to be less than 10, which is often used as an acceptable fine-tuning value in
literature, and then derive an upper bound for the cutoff-scale, yielding

Λ2 <
20π2

3y2
t

m2
h ≈

(8.1mh

yt

)2
. (1.84)

Setting yt =
√

2mt/v ≈ 1 and mh = 125 GeV for concreteness, the bound is
approximately Λ . 1 TeV. Following the EFT concept, this would predict new
particles (physics) in the one TeV range. But, the bound is probably already
excluded by collider experiments.
There are two major objections in using a definite measure for fine-tuning. The
first one is that (1.82) is only one possible choice of measure, since there is no
unique and valid procedure how to deal with fine-tuning. Furthermore, each
calculation depends on the reliability of the estimator ∆i as well as on the
personal choice where one sets the fine-tuning limit value.

Therefore, in this thesis we do not use a specific measure, but rather give every-
where an explanation, whenever we speak of fine-tuning.
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2. The Minimal Randall-Sundrum
Model

While the Standard Model describes quite successfully three of the fundamental
forces, we have no quantized description of gravity. Still, we can treat gravity on the
same footing as the other interactions. Writing down the Einstein-Hilbert action1

S =
∫
d4x

√
|g|M2

PlR
(4), we can expand the metric gµν = ηµν + hµν around the flat

metric, where hµν is the (hypothetical) force mediating graviton field (spin-2 boson).
In fact, this field couples with strength 1/MPl to matter, demonstrating the weak-
ness of gravity in relation to other forces and the notorious non-renormalizability of
gravity interactions. The point is that when we want to combine the SM and gravity,
we encounter two characteristic scales MEW and MPl. The question arises, how we
can explain and stabilize this vast hierarchy between the Planck and the electroweak
scale (Gauge HP in section 1.4). The introduction of extra dimensions does provide
a fruitful ground to solve this problem.

In section 2.1, we briefly mention some of the extra-dimensional ideas, which have
influenced the formulation of the Randall-Sundrum model, that builds the basis for
all our subsequent calculations and analyses. When discussing the actual imple-
mentation in section 2.2, we will see that this model further admits an explanation
for the quark mass splittings (Yukawa HP). At the end of this chapter, subsection
2.2.5 presents the techniques to calculate tree-level diagrams for a two-quark process
exchanging a gluon, which forms the basis for the remainder of this thesis.

2.1. Extra Dimensional Ideas

2.1.1. Nordström, Kaluza and Klein

Gunner Nordström discovered in 1914 that he could unite the physics of electro-
magnetism with his scalar gravity theory by postulating the existence of a fourth
spatial dimension [21]. But his proposal2 was generally overlooked, when Einstein
formulated the correct theory of gravity shortly thereafter. Five years later, Theodor

1The Ricci scalar in four dimension is denoted by R(4) and the metric by gµν .
2Nordström extended Maxwell’s theory to five dimensions, L = − 1

4 FMN F MN − JM AM , with the
5D el. magn. vector potential AM = (Aµ, φ/

√
4πG) and current density JM = (Jµ, ρ4πG).

Assuming AM does not depend on the fifth coordinate, the 5D wave equation separates into
standard Maxwell’s and Nordström’s gravitational wave equation �φ = −4πGρ.
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2.1. EXTRA DIMENSIONAL IDEAS

Kaluza extended Einstein’s relativity to five dimensions, but his model [22] faced two
problems:

• The Extra Dimension (ED) had not been observed and

• Kaluza assumed without explanation a 5D metric, that was independent of the
fifth dimension.

In 1926, Oscar Klein addressed these concerns by proposing a cylindrical universe
with Kaluza’s 5th dimension having a small radius r [23], which solved the first
problem above. Furthermore, by introducing a compact ED one may choose periodic
boundary conditions (BCs) for a 5D real massless scalar field3 Φ(xM ), such that
Φ(xµ, x5) = Φ(xµ, x5 + 2πr), and perform a Fourier decomposition

Φ(xµ, x5) = 1
2πr

∞∑
n=−∞

φn(xµ)e−inx5/r . (2.1)

The Fourier coefficients are functions, depending only on 4D coordinates, and there-
fore represent an infinite set of 4D scalars. In general, one speaks of a Kaluza-Klein
(KK) decomposition. Inserting (2.1) into the five-dimensional scalar action and in-
tegrating out the fifth dimension yields,

S
(5)
φ = 1

2

∫
d5x ∂M Φ∂M Φ =

∫
d4x

1
2
∂µφ0∂

µφ0 +
∞∑

n=1

[
∂µφn∂

µφn −
n2

r2 φ
2
n

]
, (2.2)

giving rise to a massless scalar particle φ0 (zero-mode) and a tower of scalars with
masses, proportional to the inverse of the compactification radius, m2

n = n2/r2. Note,
that this decomposition can be extended to tensor fields in general. For experimental
energies smaller than the 1/r scale, one is allowed to truncate the massive fields.
Coming back to Kaluza and his unification idea, the proposed x5 independent metric
can be recognized as the zero-mode part of the following 5D metric

GMN (xM ) =

gµν + ΦAµAν ΦAν

ΦAµ Φ

 =

g(0)
µν + φ0A

(0)
µ A

(0)
ν φ0A

(0)
ν

φ0A
(0)
µ φ0


︸ ︷︷ ︸

G
(0)
MN

(xµ)

+ massive modes,

(2.3)

since the tower of massive modes would depend on the fifth dimension, see (2.1).
This resolves the second objection of Kaluza’s model. Inserting (2.3) into the 5D
action of general relativity and performing the integration along x5 gives

S(5) = 1
κ2r

∫
d5x
√
|G(0)|R(5) =

∫
d4x
√
|g|
[

1
κ2R

(4) + 1
4
φ0FµνF

µν − 1
6κ2φ2

0
∂µφ0∂

µφ0

]
,

(2.4)

where R(4) is the four-dimensional Ricci scalar and |G| = det(GMN ). Choosing
κ = 16πG and φ0 = −1, the action (2.4) becomes the familiar one of general relativity
together with electromagnetism.

3Throughout this thesis, capital Latin letters take on the values 0,1,2,3,5 and Greek ones 0,1,2,3.
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CHAPTER 2. THE MINIMAL RANDALL-SUNDRUM MODEL

2.1.2. Arkani-Hamed, Dimopolous, Dvali

As a potential solution to the Gauge HP, mentioned in section 1.4, Nima Arkani-
Hamed, Savas Dimopolous and Gia Dvali (ADD) proposed Large Extra Dimensions
[24] in 1998. They considered n spatial extra dimensions, each compactified with
radius R and volume Vn ∼ Rn. The basic idea is to confine all SM fields to a
four-dimensional hyperspace, called brane, while gravity flux lines may extend in
all dimensions, referred to as bulk. This will modify Newton’s gravity law for two
test objects with masses m1 and m2, separated by a distance r. For distances much
smaller than the scale of the extra dimensions, r � R, their flux lines spread out as
in a (4+n)-dimensional non-compact space, thus the potential behaves like

V (r) ∼ − m1m2

Mn+2
Pl(4+n)

1
rn+1 (r � R), (2.5)

where MPl(4+n) is the (4+n)-dimensional Planck mass. On the other hand, if the
objects are placed at distances r � R, the flux lines connecting both masses have to
reside on the 4D brane, intuitively explaining the 1/r behavior, therefore

V (r) ∼ − m1m2

Mn+2
Pl(4+n)R

n

1
r

(r � R) . (2.6)

Comparing (2.6) with Newton’s gravity law, the four-dimensional Planck mass MPl
is determined by

M2
Pl ∼Mn+2

Pl(4+n)R
n . (2.7)

So, one can use the volume of the extra dimensions to explain the huge Planck scale
in 4D, while allowing a fundamental Planck mass of the order of the electroweak
scale, MPl(4+n) ∼MEW. Thence one can solve (2.7) for the radius

R ∼
(
MPl
1TeV

)2/n ( ~c
1TeV

)(1 TeV
MEW

)1+ 2
n

≈ 2× 10
32
n

−16 ×
(1 TeV
MEW

)1+ 2
n

mm, (2.8)

which is then mainly dependent on the number n of extra dimensions. Three prin-
cipal cases can be distinguished:

n = 1 : One ED, with R ∼ 1013 m, would imply deviations from Newtonian grav-
ity over solar distances, which is obviously excluded.

n = 2 : This case where R ∼ 1 mm is interesting, since experiments are currently
probing distances in the millimeter range and below.4

4Typically, experimental results are parametrized in terms of a Yukawa potential in addition to
the Newtonian gravitational potential V (r) = − m1m2

r
(1 + αe−r/λ), with parameters α and λ

(related to the compactification radius). Recent constraints for α and λ can be found in [25].
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2.1. EXTRA DIMENSIONAL IDEAS

n ≥ 3 : Radii smaller than 100 nm are out of experimental reach for direct searches
using gravitational methods and are therefore phenomenologically less inter-
esting.

Apart from gravity law distortions, one may also expect energy violations in col-
lider collisions, due to the disappearance or reappearance of particles from the extra
dimensions.

Subsuming, ADD’s model provides a solution to the Gauge HP, but introduces
at the same time another hierarchy concerning the large volume Vn of the extra
dimensions in relation to the weak scale MEW. Since, assuming a natural radius
R ∼ 1/MEW, we have to demand (MPl/TeV)2/n in (2.8) to be of O(1), which would
require a large number n of extra dimensions.

2.1.3. Warped Extra Dimension

Unlike ADD’s several large EDs, Lisa Randall and Raman Sundrum published in
1999 [1] an approach (RS1) to solve the Gauge Hierarchy Problem with one small
extra dimension. Four-dimensional space-time gets extended by the compact orbifold
S1/Z2. The complete space then owes the metric

ds2 = e−2kr|φ|ηµνdx
µdxν − r2dφ2, (2.9)

with compactification radius r, a positive constant k (related to the curvature) and
the orbifold5 coordinate φ ∈ [0, π]. Attached to the fixed points are two 3-branes (a
4D hypersurface with one time and three spatial dimensions), one at φ = 0, called
"hidden" brane and one at φ = π, referred to as "visible" brane, since all SM fields
are confined to this one. We denote their 4D metrics as

ghid
µν (xρ) ≡ Gµν(xρ, 0) and gvis

µν (xρ) ≡ Gµν(xρ, π), (2.10)

and see from (2.9) that gvis
µν is suppressed by the square of the so called warp-factor

e−kr|φ|. This is the crucial ingredient for warping the Planck scale down to the weak
scale. The action for the Higgs field Φ, which is confined on the visible brane, reads

Svis 3
∫
d4x

√
|gvis|

{
gµν

vis(DµΦ)†(DνΦ)− λ
(
|Φ|2 − v2

5/2
)2
}
, (2.11)

where gµν
vis is the inverse to gvis

µν . In order to obtain a canonically normalized Higgs
field, we perform a redefinition Φ→ ekrπΦ, yielding

Svis 3
∫
d4x

{
ηµν(DµΦ)†(DνΦ)− λ

(
|Φ|2 − e−2krπv2

5/2
)2
}
, (2.12)

which is the common 4D Higgs action with a redefined vacuum expectation value

v ≡ e−krπv5 . (2.13)

Assuming a fundamental scale of order the Planck mass, then v5 ∼ MPl can be
exponentially reduced to the MEW ∼ v scale for kr ≈ 12. Such a value can be
stabilized by the Goldberger-Wise mechanism [26].

5More details on the orbifolding procedure will be given in section 2.2.1.

27



CHAPTER 2. THE MINIMAL RANDALL-SUNDRUM MODEL

2.2. The Actual RS Model

This section describes the Minimal Randall-Sundrum model, which constitutes the
framework for performing calculations in the subsequent chapters. It is mainly based
on [27], [28] and [29], where one can find further details.

2.2.1. Structure & Setup

Let us start with a manifold M (in general non-compact) and a group G, that acts
freely on M through representation maps τg : M → M for each g ∈ G. Freely
means that none of the maps has fixed points in M , except for the identity map
τi. Identifying points y1, y2 ∈ M that belong to the same orbit, i.e. y1 = τg(y2) for
some g ∈ G, will construct the compactified manifold C = M/G. Now, we introduce
another discrete group H, acting this time non-freely on C, with ζh : C → C for
h ∈ H. Therefore some transformations ζh have fixed points, resulting in singularities
for the factorspace O = C/H, which is called an orbifold6.

In the RS model, M = R and G = Z with τn(y) = y + 2πn constructs the unit
circle S1. Thereafter, H = Z2 with ζ±(φ) = ±φ, φ ∈ S1 leads to the orbifold S1/Z2
as depicted in figure 2.1.

.

.

.φ=0 .+π
.−π .φ=0 .φ=π .φ=0 .φ=π

.x5=0 .x5=rπ
.+φ ∼ −φ
.Identifiy .∼=

Figure 2.1.: Schematic representation of the orbifolding procedure (based on [32]).

Let us consider a general field f(xµ, φ), which is defined on the 4D space-time
with coordinates xµ and on the orbifold, parametrized by φ ∈ [0, π]. Recapitulating
the compactification and orbifolding steps above, we can additionally specify field
transformations under the symmetry groups G and H,

f(xµ, τn(y)) ≡ f(xµ, y + 2πn) = Tnf(xµ, y), f(xµ, φ) = Zff(xµ,−φ). (2.14)

Note that f shall be implicitly continued in accord with (2.14), when the inserted
coordinate has an extended domain, e.g. for y ∈ R or φ ∈ [−π, π]. All fields shall be
2π-periodic in the fifth dimension with Tn ≡ 1, which is referred to as an ordinary
compactification. The Z2 symmetry is defined separately for each field (Zf = +1
or Zf = −1) and allows to solve the chirality problem, which is discussed in the
following.

6A good treatment on the compactification and orbifolding procedure can be found in [30] and
[31].
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The Clifford algebra in five dimensions, {ΓM ,ΓN} = 2GMN , can be fulfilled by a
set of five 4× 4 Dirac matrices

Γµ = γµ and Γ5 = iγ5 = −γ0γ1γ2γ3, (2.15)

including γ5, which is needed in 4D to build the operators projecting on left- and
right-chiral spinors. Therefore, the 5D Lorentz group furnishes only one irreducible
representation and it is not possible to define chiral fermions. As a resort, one can use
the transformation behavior under the Z2, also called parity or orbifold, symmetry
in (2.14). A fermionic field Q(xµ, φ) can always be splitted into a Z2 even and odd
part

Q(xµ, φ) = QL(xµ, φ) +QR(xµ, φ) with QL/R(xµ, φ) = ±QL/R(xµ,−φ), (2.16)

where we used a foresighted notation. As an example7, we can perform a decompo-
sition of the fermionic fields into simple trigonometric functions, yielding

QL(xµ, φ) =
∞∑

n=0
Q

(n)
L (xµ) cos(nφ), QR(xµ, φ) =

∞∑
n=0

Q
(n)
R (xµ) sin(nφ), (2.17)

with the familiar left and right-chiral spinors Q(n)
L , Q(n)

R in four dimensions. Only a
left-chiral zero-mode exists, which can be part of a SU(2)L doublet. The right-chiral
singlets can be obtained by introducing an additional set of fermions qc(xµ, φ), which
can be decomposed analogous to (2.16) with reversed orbifold symmetries, allowing
this time for a right-handed zero-mode.

The Minimal RS model is the simplest realization of the Randall-Sundrum idea,
introduced in subsection 2.1.3. Four-dimensional Minkowskian space-time is supple-
mented by the previously discussed S1/Z2 orbifold with a compactification radius
r. For the fifth coordinate, we use φ ∈ [−π, π] or situationally the associated coordi-
nate x5 = rφ, that has the proper mass dimension. We assume two existing 3-branes
attached to the fixed points, one at φ = 0, which is called UV (Planck) brane and
one at φ = π, denoted as IR (TeV) brane. The warped geometry of the model is
expressed by the metric

ds2 = e−2σ(φ)ηµνdx
µdxν − r2dφ2, (2.18)

which is a general ansatz, respecting local 4D Lorentz invariance at each firm point
in the extra dimension. Inserting (2.18) into the Einstein equations, derived from
the 5D classical action (only gravity part)

S(5) =
∫
d5x

√
|G|

{
2M3

Pl(5)R
(5) − Λ(5) − δ(x5)VUV − δ(x5 − rπ)VIR

}
, (2.19)

7Take a flat spatial extra dimension of size R and consider the 5D kinetic action for a mass-
less fermion S(5) =

∫
d4xR

∫
dφ Q̄i∂M ΓM Q, and use (2.16), (2.17) to integrate out φ, leading

to S(4) = πR
∫

d4x
{

Q̄
(0)
L i∂µγµQ

(0)
L +

∑∞
n=1 Q̄(n)(i∂µγµ − n/R)Q(n)

}
. Besides the left-chiral

massless zero-mode, a massive tower of KK particles for each chirality is generated.
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yields a solution for σ(φ) = kr|φ| and VUV = −VIR = 24M3
Pl(5)k. Calculational

details can be found in appendix A.1. The parameter k is related to the cosmological
constant through k2 = −Λ(5)/24M3

Pl(5), enforcing a negative value of Λ(5). Such a
space is of the anti de-Sitter type. Choosing the parameter set (k,MPl(5), 1/r) ∼MPl
and the warp factor such that the product kr ≈ 12, then the quantity

ε ≡ e−krπ = MEW
MPl

≈ 10−16 (2.20)

can resolve the hierarchy between the electroweak and the Planck scale. Remaining
is a small hierarchy, which can be expressed through the "volume" factor

L ≡ − ln ε = krπ ≈ 37, (2.21)

which is larger compared to its natural size of O(1). For the sake of completeness,
we define here another important quantity,

MKK ≡ kε, (2.22)

that will represent the mass scale for the lowest modes of the KK particles.

Note further that the RS model is not expected to be a fundamental theory8, but
rather an effective field theory with a cutoff, that depends on the position in the
extra-dimension φ. We naturally choose ΛUV(φ) = e−kr|φ|MPl, indicating that the
typical scale on the UV brane is of order the Planck scale, while the natural cutoff
at the IR brane is given by ΛUV(π) ∼ εMPl, lying in the TeV range. This implies
that if we follow the original RS proposal (RS1) in [1] by localizing all fields on the
IR brane, we can write down higher-dimensional operators contributing to FCNC
processes or allowing for proton decay, which are only suppressed by some TeV scale.
Therefore, it is sensible9 to let the fields propagate into the complete five-dimensional
space-time (bulk). Only the Higgs field stays confined on the IR brane, in order to
keep the solution of the Gauge HP (see the end of section 2.2.2). So, we will perform
a generalization of the remaining SM fields to five dimensions and promote GSM to
a bulk gauge group involving 5D gauge transformations. In this sense, we refer to
our model as being "minimal" since we do not include further higher dimensional
operators.

Before dealing with the particle content, we state the 5D metric representation,
that will be used throughout this thesis,

GMN =

ηµνe
−2kr|φ| 0

0 −1

 , (2.23)

8Actually, we will see in (2.28) that the gauge couplings have negative mass dimension, implying
that we have irrelevant interaction operators in the RS Lagrangian.

9In fact, it turns out that we will additionally obtain a geometrical explanation for the Yukawa
hierarchy problem (see section 2.2.4).

30



2.2. THE ACTUAL RS MODEL

which is obtained from (2.18) by inserting σ(φ) = kr|φ|. Furthermore, when we
integrate over the fifth dimension (below), it is often convenient to switch to the
t-notation, introduced in [33], t = εeσ(φ). Some important relations, concerning the
conversion from φ to t and vice versa are listed in the appendix A.2.

2.2.2. Gauge Boson & Higgs Sector

The extension of the SM bosonic action to five dimensions reads

S
(5)
BS =

∫
d4x r

∫ π

−π
dφ [LGBS + LHS + LGF + LFPG] , (2.24)

where LGBS contains the kinetic terms for the 5D gauge boson fields W i
M , BM and

Ga
M . Constructing field strength tensors analog to (1.33) in the SM, we find

LGBS =
√
|G|GKMGLN

(
−1

4
W i

KLW
i
MN −

1
4
BKLBMN −

1
4
Ga

KLG
a
MN

)
. (2.25)

Note that the gauge bosons have mass dimension 3/2, in order to obtain a dimen-
sionless action. Proceeding with LHS, we will explain at the end of this section that
the Higgs particle must be confined on the IR brane. Thus, we introduce a δ-function
in front of the kinetic and potential terms, yielding

LHS = δ(|φ| − π)
r

[
|DµΦ|2 − V (Φ)

]
with V (Φ) = −µ2|Φ|2 + λ|Φ|4. (2.26)

The covariant derivative in five dimensions, compare with (1.26), reads in general

DM = ∂M − ig5W
i
Mτ i − ig′

5BMY − igs5G
a
MT a, (2.27)

with dimensionful 5D couplings, related to the 4D ones by

{g5, g
′
5, gs5} =

√
2πr {g, g′, gs} . (2.28)

Here we directly see that the 5D couplings have negative mass dimension, thus the
interaction terms involve irrelevant operators showing directly that the Minimal RS
model is an effective field theory. Proceeding with the Higgs field, we decompose it
by

Φ = 1√
2

 −i√2ϕ+

v + h+ iϕ3

 with ϕ± = 1√
2

(ϕ1 ∓ iϕ2), (2.29)

where v = e−krπv5 ≈ 246 GeV, as shown in section 2.1.3, with the bare VEV v0 of
order the Planck mass.

Before continuing, some remarks are needed concerning the treatment of the δ-
function in (2.26). The range of integration along φ from [−π, π] does not include
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small open neighborhoods around π and −π respectively, therefore the δ-function
shall be understood as a limiting procedure

δ(|φ| − π) ≡ lim
θ→0+

1
2

[δ(φ− π + θ) + δ(φ+ π − θ)] , (2.30)

where the δ-functions on the right-hand side are defined on the interval [−π, π]. The
prefactor 1/2 in (2.30) ensures a normalization on the orbifold interval [0, π]. As we
will see later, appearing δ-functions in the Lagrangian are responsible for the bound-
ary conditions of the fields. Due to the above limiting procedure, these conditions
get shifted into the bulk, which is relevant in case of discontinuities10. In such cases,
we use the notation f(π−) ≡ limθ→0+ f(π− θ) and f(−π+) ≡ limθ→0+ f(−π+ θ) for
a function f(φ) being discontinuous at φ = π and φ = −π respectively.

EWSB and Kaluza-Klein Decomposition

Next we decompose the gauge boson fields analog to the SM mass eigenstates in
(1.51) and (1.53), yielding

W±
M = 1√

2
(W 1

M ∓ iW 2
M ), ZM = 1√

g2
5 + g′2

5

(g5W
3
M − g′

5BM ),

AM = 1√
g2

5 + g′2
5

(g′
5W

3
M + g5BM ) . (2.31)

In this basis, we obtain from the kinetic Higgs term in LHS after SSB with 〈Φi〉 =
δi2v/

√
2 the following 5D mass parameters11

MW = vg5
2
, MZ =

v
√
g2

5 + g′2
5

2
, MA = 0. (2.32)

Note that these parameters have mass dimensions of 3/2, due to (2.28). They are
not the physical masses, but they are related to them via the boundary conditions
of the fields, see (2.37) below.

The gauge fixing part in (2.24) is chosen such, as to eliminate terms that mix
vector µ- and scalar 5-components of the gauge bosons, which appear in LGBS. This
can be achieved by the following gauge fixing Lagrangian

LGF =− 1
2ξG

(
∂µGa

µ − ξG

[
∂5e

−2σ(φ)Ga
5

])2
− 1

2ξA

(
∂µAµ − ξA

[
∂5e

−2σ(φ)A5
])2

− 1
2ξZ

(
∂µZµ − ξZ

[
δ(|x5| − rπ)MZϕ

3 + ∂5e
−2σ(φ)Z5

])2

− 1
ξW

∣∣∣∂µW+
µ − ξW

[
δ(|x5| − rπ)MZϕ

+ + ∂5e
−2σ(φ)W+

5

]∣∣∣2 . (2.33)

10This shift also eliminates possible boundary terms, coming from partial integrations of Lagrangian
terms, thus enabling the hermiticity requirement of the Lagrangian.

11Note that these parameters are not strictly five dimensional ones, since they involve the 4D VEV.
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A comprehensive treatment of gauge fixing and Faddeev-Popov ghosts in the Minimal
RS model can be found in [28].

In the following part, we will integrate out the fifth dimension. Therefore, the 5D
boson fields need to be decomposed, yielding

Ga
µ(x, φ) = 1√

r

∑
n

G(n)a
µ (x)χG

n (φ), Ga
φ(x, φ) = 1√

r

∑
n

aG
nϕ

(n)a
G (x)∂φχ

G
n (φ),

Aµ(x, φ) = 1√
r

∑
n

A(n)
µ (x)χA

n (φ), Aφ(x, φ) = 1√
r

∑
n

aA
nϕ

(n)
A (x)∂φχ

A
n (φ),

Zµ(x, φ) = 1√
r

∑
n

Z(n)
µ (x)χZ

n (φ), Zφ(x, φ) = 1√
r

∑
n

aZ
nϕ

(n)
Z (x)∂φχ

Z
n (φ),

W±
µ (x, φ) = 1√

r

∑
n

W±(n)
µ (x)χW

n (φ), W±
φ (x, φ) = 1√

r

∑
n

aW
n ϕ

±(n)
W (x)∂φχ

W
n (φ),

(2.34)

with 4D mass eigenstates G(n)a
µ (x), etc. and corresponding profile functions χa

n(φ)
(with a = G, A, Z, W ), fulfilling the orthonormality relations∫ π

−π
dφχa

m(φ)χa
n(φ) = δmn . (2.35)

Additionally, the profiles are chosen even under the orbifold symmetry, in order to
allow for a zero-mode and reproduce the SM gauge bosons. As a consequence of 5D
gauge invariance12 (before EWSB), the scalar components13 Gφ, Aφ, Zφ and W±

φ

must have the opposite Z2 symmetry, therefore they are odd and vanish at the orb-
ifold boundaries φ = −π, π.

Inserting the decompositions (2.34) into the bosonic action and trying to perform
the integration along φ, one finds that the profile χa

n must obey the equation of
motion (EOM)

− 1
r2∂φe

−2σ∂φχ
a
n(φ) = (ma

n)2χa
n(φ)− δ(|φ| − π)

r
M2

aχ
a
n(φ) (2.36)

with boundary conditions at the UV and IR brane, given by

∂φχ
a
n

∣∣∣
0

= 0, ∂φχ
a
n

∣∣∣
π−

= −rM
2
a

2ε2
χa

n(π−) . (2.37)

Note that the condition at the IR brane implies a kink for the derivative of the
profile ∂φχ

a
n(φ) at φ = −π, π. Both boundary conditions are important, since one

can derive from them the physical masses ma
n.

12For instance, consider the infinitesimal gauge transformation of the five-dimensional photon field,
AM (x, φ) → A′

M = AM (x, φ) + 1
e
∂M α(x, φ), which is only consistent when Aµ and A5 have

opposite Z2 symmetries.
13The φ- and 5-component of a boson are related by the radius r, exemplary for the gluon this

states Gφ = r G5.
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What remains are the scalar fields, which can be decomposed in the basis of the
4D mass eigenstates of Zφ and Wφ,

ϕ±(x) =
∑

n

bW
n ϕ

±(n)
W (x), ϕ3(x) =

∑
n

bZ
nϕ

(n)
Z (x), (2.38)

with yet to be determined coefficients bW
n and bZ

n . Actually, there is only one possible
choice,

aa
n = − 1

ma
n

, ba
n = Ma√

r

χa
n(π−)
ma

n

, (2.39)

that will give the desired form of the four-dimensional action (only quadratic terms)

S
(5D)
BS,2 =

∑
n

∫
d4x

{
− 1

4
G(n)a

µν G(n)aµν − 1
2ξG

(∂µG(n)a
µ )2 + (mG

n )2

2
G(n)a

µ G(n)aµ

− 1
4
F (n)

µν F
(n)µν − 1

2ξA
(∂µA(n)

µ )2 + (mA
n )2

2
A(n)

µ A(n)µ

− 1
4
Z(n)

µν Z
(n)µν − 1

2ξZ
(∂µZ(n)

µ )2 + (mZ
n )2

2
Z(n)

µ Z(n)µ

− 1
2
W (n)+

µν W (n)−µν − 1
ξW

(∂µW (n)+
µ )(∂µW (n)−

µ ) + (mW
n )2

2
W (n)+

µ W (n)−µ

+ 1
2
∂µϕ

(n)a
G ∂µϕ

(n)a
G − ξG(mG

n )2

2
ϕ

(n)a
G ϕ

(n)a
G + 1

2
∂µϕ

(n)
A ∂µϕ

(n)
A

− ξA(mA
n )2

2
ϕ

(n)
A ϕ

(n)
A + 1

2
∂µϕ

(n)
Z ∂µϕ

(n)
Z − ξZ(mZ

n )2

2
ϕ

(n)
Z ϕ

(n)
Z

+ ∂µϕ
(n)+
W ∂µϕ

(n)−
W − ξW (mW

n )2ϕ
(n)+
W ϕ

(n)−
W + L(n)

FPG

}

+
∫
d4x

1
2

(
∂µh∂

µh+ 2λv2h2
)
. (2.40)

At this stage, it is necessary to check the conservation of the degrees of freedom
concerning the gauge particles. The matching procedure shows that all (massive)
KK modes of the gauge bosons, e.g. Z(n≥1)

µ , obtained their longitudinal degrees of
freedom by absorbing the corresponding scalar modes, like ϕ(n≥1)

Z . At the level of
the zero-modes (n = 0), the photon and gluon remain massless while the W and Z
bosons "eat" the scalars ϕ± and ϕ3 to become massive, analogous to the SM. Now all
degrees of freedom are distributed, although we have not considered zero-modes14

of the scalar gauge bosons. But it turns out that such modes do not exist in our
theory, which can be illustrated as follows. Before EWSB (v → 0), the zero-modes
14To be precise, we understand under a zero-mode a massless particle having a constant profile,

e.g. A
(0)
µ , G

(0)
µ , or a massive particle that would become massless when setting v → 0, e.g.

W
±(0)
µ , Z

(0)
µ .
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would be flat and by imposing the requirement of being orbifold-odd need to vanish.
When we slightly enhance v, we do not reintroduce a zero-mode, implying that they
are also not existent in our theory after EWSB.

Bosonic Bulk Profiles

We proceed with the determination of the profile functions χn (suppressing label
a) in equation (2.36). When we switch to t-notation it is convenient to define the
dimensionless ratio xn ≡ mn/MKK. Based on this, (2.36) leads for the homogeneous
part to the first order Bessel differential equation(

t2
d2

dt2
+ t

d

dt
+ (xnt)2 − 1

)
χn(t)
t

= 0, (2.41)

whose solution is a superposition of Bessel functions of the first and second kind,

χn(t) = 1
Nn

t [J1(xnt) + αnY1(xnt)] . (2.42)

The parameters xn and αn can be determined from the boundary conditions (2.37).
Taking the UV BC into account, the solution can be reformulated [27] as

χn(t) = Nn

√
L

π
t c+

n (t) with c+
n (t) = Y0(xnε)J1(xnt)− J0(xnε)Y1(xnt) . (2.43)

The normalization constant Nn can be fixed via the orthogonality relation in (2.35),
yielding

Nn = [c+
n (1)]2 + [c−

n (1)]2 − 2
xn
c+

n (1)c−
n (1)− ε2[c+

n (ε)]2, (2.44)

where we introduced

c−
n (t) = 1

xnt

d

dt
[tc+

n (t)] = Y0(xnε)J0(xnt)− J0(xnε)Y0(xnt) . (2.45)

With this function, we can formulate both boundary conditions at the UV and IR
brane in the following way,

c−
n (ε) = 0, xnc

−
n (1−) = − g̃2v2

4M2
KK

Lc+
n (1−), (2.46)

where g̃2 = g2 for the W boson and g̃2 = g2 + g′2 in case of the Z boson. Note
that for the gluon and photon, the IR boundary condition in (2.46) gets replaced by
c−

n (1) = 0, giving rise to massless zero-modes χ0 = 1/
√

2π, which have to be added
to the solutions in (2.43).
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Reason for Confining the Higgs on the IR Brane

As a try, let the Higgs field propagate into the bulk. This alters the gauge boson
EOM by replacing the δ-function in (2.36) with 1, changing the boundary conditions
to

∂φχ
a
n

∣∣∣
0+

= 0, ∂φχ
a
n

∣∣∣
π−

= 0, (2.47)

Moreover, the 4D VEV v, appearing in the mass parameters (2.32), is replaced by
a φ-dependent vacuum expectation value v(φ) = e−2σ(φ)v5. For instance, let us
consider a W boson with 5D mass M5 ≡ g5v5/2, whose EOM in t-notation,(

t2
d2

dt2
+ t

d

dt
+ (xnt)2 − ν2

)
χn(t)
t

= 0, (2.48)

is now a Bessel differential equation with paramter ν ≡
√

1 +M2
5 /k

2r. Solving
(2.48) and integrating along small neighborhoods around the boundaries, while tak-
ing (2.47) into account, induces for the bulk-Higgs scenario a zero-mode mass of

m2
0 ≈

M2
5

2πkr2 = g2v2
5

4kr
. (for a detailed calculation see [34]) (2.49)

As v5 is naturally of order MPl and m0 ∼ O(100 GeV), this reintroduces a strong
fine-tuning issue and does not present a solution to the Gauge HP.

2.2.3. Fermion Sector

Next, we would like to write down the fermionic action in five dimensions. Since the
RS space is curved, we have to generalize the Dirac operator iγM∂M of flat space-
time. Therefore, one introduces the inverse vielbeins EM

a and the spin covariant
derivative DMψ = (∂M− i

4ω
ab
Mσab)ψ with the spin connection ωab

M and σab ≡ i
2 [γa, γb].

By means of these quantities, the following kinetic 5D Dirac Lagrangian

LF =
√
|G|

(
EM

a ψ̄iγaDMψ
)

(2.50)

is invariant under general coordinate transformations of General Relativity as well as
Lorentz transformations, see [35] for more details. Making (2.50) manifest hermitian
by writing it in the form OH = 1

2(O + O†) and adding a explicit mass term yields
after some calculation steps [33],

LF =
√
|G|

{
EM

a

[
i

2
ψ̄γa(

⇀
∂M −

↼
∂M )ψ + ωbcM

8
ψ{γa, σbc}ψ

]
− sgnφmψ̄ψ

}
. (2.51)

We added the function sgnφ in the ψ̄ψ-term, to ensure an orbifold even mass term
after the KK decomposition in (2.53), where even/odd fields will correspond to
left/right-chiral fields at the 4D level. In case of the RS metric, the vielbeins are
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determined to EM
a (φ) = diag(eσ(φ), eσ(φ), eσ(φ), eσ(φ), 1), while the spin connection

will cancel in the fermionic Lagrangian (2.51), see the extra note to [36].

On the basis of the above mentioned, we can proceed with the quark sector includ-
ing the kinetic terms, explicit mass terms and the Yukawa terms. The 5D Lagrangian
is given by

LFS =
√
|G|
{
Q̄iΓaEM

a DMQ− sgnφ Q̄MQQ+
∑

q=u,d

(
qciΓaEM

a DMqc − sgnφ q̄cM qq
c
)

− δ(x5 − rπ)
[
Y (5)

u Q̄Φdc + Y
(5)
d Q̄iσ2Φ∗uc + h.c.

]}
, (2.52)

where MQ,q are diagonal matrices15 containing the real bulk masses. Following the
discussion in [27], we normalize the up- and down-type Yukawa matrices Y (5)

u , Y
(5)
d

by the curvature constant k, defining dimensionless 4D Yukawa matrices via Y q =
Y (5)

q k/2 for q = u, d. Assuming the naturalness principle, we expect their complex
entries to be of O(1). Concerning the notation in (2.52), Q ≡ (Q1, Q2, Q3) stands
for a three-vector in generation space containing the SU(2)L doublets in flavor space
Qn = (un, dn)> for n = 1, 2, 3. Likewise the 5D singlets are subsumed by qc ≡
(qc,1, qc,2, qc,3) with q = u, d. Note that the quark fields have mass dimension two.

Kaluza-Klein Decomposition

The corresponding decomposition in 4D modes and profiles is given by

qL(x, φ) = e2σ

√
r

∞∑
n=1

C(Q)
n (φ)a(Q)

n q
(n)
L (x), qc

L(x, φ) = e2σ

√
r

∞∑
n=1

S(q)
n (φ)b(q)

n q
(n)
L (x),

qR(x, φ) = e2σ

√
r

∞∑
n=1

S(Q)
n (φ)b(Q)

n q
(n)
R (x), qc

R(x, φ) = e2σ

√
r

∞∑
n=1

C(q)
n (φ)a(q)

n q
(n)
R (x),

(2.53)

where we set q = u, Q = U for the up-sector and q = d, Q = D for the down-sector.
The fields q, qc contain the three up- or down-type 5D flavor eigenstates16, while
q(n) represents a single chiral 4D Dirac spinor of mode n in the mass basis. For
n = 1, 2, 3, they fit the SM quarks with masses m1, m2 and m3. Higher modes can
be grouped to form Kaluza-Klein modes17, each containing six quarks due to the
doubling of the 5D quark content. To allow for chiral 4D quarks, the q, qc fields are
splitted into an orbifold even and odd part, which is managed by the Z2 even (odd)
profiles CQ,q

n (φ) (SQ,q
n (φ)). For each mode n, these profiles are diagonal 3×3 matrices

with components, depending on the different bulk mass parameters. In every term
15It is always possible to express the action in this bulk mass basis, see [27].
16In case of the up-sector, this means q = u = (u1, u2, u3)> and qc = uc = (uc,1, uc,2, uc,3)>.
17Exemplarily for the up-sector, u(n) = ( u, c, t︸ ︷︷ ︸

SM quarks

, u(4), u(5), u(6), u(7), u(8), u(9)︸ ︷︷ ︸
1. KK mode

, ...) .
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of (2.53), they get multiplied with three-vectors a(q,Q)
n or b(q,Q)

n , which contain the
information about 4D flavor mixing, e.g. in the limit of vanishing Yukawa entries,
the a- and b-vectors approach unit vectors.

Note that due to gauge invariance, the components of the SU(2)L doublets have
the same profiles, such that CU

n ≡ CD
n and SU

n ≡ SD
n . Still, the a- and b-vectors are

in general different for Q = U,D. We agree upon, that Q shall only be replaceable
by U,D in case of the profiles and flavor vectors but stay fixed in other cases of
appearance.

Inserting the KK decompositions into the action (2.52), and comparing it to the
desired four-dimensional one

S
(5)
FS 3

∑
q=u,d

∞∑
n=1

∫
d4x

{
q̄(n)i/∂q(n) −mq

n q̄
(n)q(n)

}
(2.54)

requires the following orthonormality condition to hold∫ π

−π
dφ eσ(φ)

{
a(Q,q)

m C(Q,q)
m C(Q,q)

n b(Q,q)
n + b(q,Q)

m S(q,Q)
m S(q,Q)

n a(q,Q)
n

}
= δmn (2.55)

and constrains the a- and b-vectors by

a(Q,q)
n = b(Q,q)

n and a(Q)†
n a(Q)

n + a(q)†
n a(q)

n = 1 . (2.56)

Before proceeding, we will switch to t-notation and define more compact expressions
for the profiles [37],

χ(Q)
m (t) =

√
2π
Lε

C(Q)
n (t)a(Q)

n

S(q)
n (t)a(q)

n

 , χ(q)
m (t) =

√
2π
Lε

S(Q)
n (t)a(Q)

n

C(q)
n (t)a(q)

n

 , (2.57)

such that the orthonormality condition in (2.55), by making use of (2.56), can be
rewritten as ∫ 1

ε
dt χ(Q,q)†

m (t)χ(Q,q)
n (t) = δmn . (2.58)

With respect to the expressions in (2.57), the equations of motion take the form

t∂tχ
(Q)
n (t) = −xntχ

(q)
n (t) +Mq(t)χ(Q)

n (t),
t∂tχ

(q)
n (t) = xntχ

(Q)
n (t)−Mq(t)χ(q)

n (t), (2.59)

where we defined

Mq(t) =

cQ 0

0 −cq

+ vtδ(t− 1−)√
2MKK

 0 Y q

Y †
q 0

 . (2.60)
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We introduced the dimensionless c-parameters, given by cQi ≡ +MQ,i/k and cqi ≡
−Mq,i/k. Integrating (2.59) along small intervals around the fixed point ε, one
can derive the UV BC S(Q,q)

n (ε+) = 0. In case of the IR boundary condition, the
calculation is not straight forward since one needs a finite-width regularization of
the appearing δ-function [37] in (2.60). Thus, one finds

S(Q)
n (1−)a(Q)

n = v√
2MKK

Ỹ qC(q)
n (1−)a(q)

n ,

S(q)
n (1−)a(q)

n = − v√
2MKK

Ỹ
†
qC(Q)

n (1−)a(Q)
n , (2.61)

with rescaled Yukawa matrices

Ỹ q = f

(
v√

2MKK

√
Y qY †

q

)
Y q, f(A) = tanh(A)A−1 . (2.62)

When we expand the tanh-function around small arguments, both Yukawa matrices
coincide at leading order in v2/M2

KK.

Since the profile matrices are regular, we can reformulate the IR boundary condi-
tion into two eigenvalue equations for a(Q,q)

n , whose eigenvalues can be determined
from

det
(

1 + v2

2M2
KK

Ỹ
†
qC(q)

n (1−)
[
S(q)

n (1−)
]−1

Ỹ qC(Q)
n (1−)

[
S(Q)

n (1−)
]−1

)
= 0 . (2.63)

This can be done numerically and yields the physical masses of the SM modes and
its KK excitations.

Fermionic bulk profiles

The set of EOMs in (2.59) for the profiles C(Q,q)
n and S(Q,q)

n simplifies, when we
consider only the homogeneous part, since the mass and profile matrices are both in
diagonal form, yielding

(t∂t − cQi,qi) fL
n,i = −xnt f

R
n,i, (t∂t + cQi,qi) fR

n,i = xnt f
L
n,i, (2.64)

with fL
n,i = C

(Q)
n,i (t), S

(q)
n,i(t) and corresponding fR

n,i = S
(Q)
n,i (t), C

(q)
n,i(t). Taking into

account the boundary conditions, induced by the Yukawa terms, one arrives at the
following explicit solutions

C(Q,q)
n (φ) = Nn(cQ,q)

√
Lεt

π
f+

n (t, cQ,q),

S(Q,q)
n (φ) = ±sgn(φ)Nn(cQ,q)

√
Lεt

π
f−

n (t, cQ,q), (2.65)
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where we returned to the argument φ to stress the orbifold symmetry properties of
the profiles18. On the r.h.s. of (2.65), we further used special combinations of Bessel
functions,

f±
n (t, c) = J−1/2−c(xnε) J∓1/2+c(xnt)± J1/2+c(xnε) J±1/2−c(xnt) . (2.66)

As in the bosonic case, the orthonormality condition (2.55) determines the normal-
ization constant to

N−2
n (c) = [f+

n (1, c)]2 + [f−
n (1, c)]2 − 2c

xn
f+

n (1, c)f−
n (1, c)− ε2[f+

n (ε, c)]2 . (2.67)

Note that for the special case of (c + 1/2) ∈ N , the correct solutions have to be
obtained by a limiting procedure.

Zero-Mode Approximation (ZMA)

In low energy processes external fermions always correspond to zero-modes (n =
1, 2, 3), therefore it is useful for the physical interpretation to have an analytic ex-
pression of the profile functions. These can be achieved by expanding the exact
solutions (2.65) in the limit xn � 1, since all SM fermion masses are much lighter
than the KK scale. One finds,

C(Q,q)
n (φ) ≈

√
Lε

π

F (cQ,q)√
1 + δn(cQ,q)

[
tcQ,q − δn(cQ,q)t1−cQ,q

]
+O(x2

n)

S(Q,f)
n (φ) ≈ ±sgn(φ)

√
Lε

π

xnF (cQ,q)√
1 + δn(cQ,q)

[
t1+cQ,q − ε1+2cQ,q t−cQ,q

1 + 2cQ,q

]
+O(x3

n),

(2.68)

making use of the "zero-mode profile"

F (c) ≡ sgn[cos(πc)]
√

1 + 2c
1− ε1+2c

, (2.69)

and the parameter (valid for c2 6= 1/4)

δn(c) ≡ x2
n

4c2 − 1
ε1+2c . (2.70)

As expressed in (2.53), each profile function is always multiplied with its corre-
sponding a(Q,q)

n vectors. When considering the complete profiles C(Q,q)
n (φ)a(Q,q)

n and

18In t-notation, the even and odd Z2 parity behavior of the profiles is not directly visible. For
clarity, we use expressions in dependence of φ.
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S(Q,q)
n (φ)a(Q,q)

n , it turns out that the parameter function δn(c) gives only a small con-
tribution and can be neglected. The relevant function is then the zero-mode profile,
which behaves like

F (c) ≈


√

1 + 2c , −1/2 < c < 1/2

−
√
−1− 2c ε−c−1/2 , −3/2 < c < −1/2

. (2.71)

In this thesis, typical bulk mass parameters, except for the top, lie in the range
[−3/2,−1/2], where F (c) is exponentially suppressed (ε ≈ 10−16). This suppression
effect over several orders of magnitude, generated by small O(1) variations in the
c-parameters, allows for an explanation of the flavor hierarchy, discussed in the next
section.

Note, that when we speak of ZMA profiles, we refer only to the leading order
expressions,

C(Q,q)
n (φ)â(Q,q)

n ≈

√
Lε

2π
F (cQ,q)tcQ,q â(Q,q), S(Q,q)

n (φ)â(Q,q) ≈ 0, (2.72)

where â(Q,q)
n are the eigenvectors to the mass equation (2.74), discussed in the fol-

lowing.

2.2.4. Flavor Structure and Hierarchy

For a better understanding of the relations between the input parameters and the
fermion mass spectrum and mixing, it is adequate to work with the leading terms
of the C and S profiles. Evaluating (2.68) on the IR brane and neglecting the δn(c)
functions, yields

C(Q,q)
n (π−) ≈

√
Lε

π
F (cQ,q), S(Q,q)

n (π−) ≈ ±

√
Lε

π

xn

F (cQ,q)
. (2.73)

Here we can directly infer the meaning of the zero-mode function as determining the
value of a quark profile at the IR brane. Another common way to state this is to say
that F (c) gives the wavefunction overlap of a quark profile with the Higgs profile.
Inserting the expressions (2.73) into the fermionic boundary conditions on the IR
brane in (2.61), one can derive the eigenvalue equations(

m2
n1− v2

2
Y eff

q

(
Y eff

q

)†)
â(Q)

n = 0,
(
m2

n1− v2

2
(
Y eff

q

)†
Y eff

q

)
â(q)

n = 0, (2.74)

with orthonormalized vectors â(Q,q)
n ≡

√
2a(Q,q)

n and effective Yukawa matrices(
Y eff

q

)
ij
≡ F (cQi)(Yq)ijF (cqj ) . (2.75)
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The eigenvectors â(Q)
n and â

(q)
n form the columns of unitary matrices

U q =
(
a

(Q)
1 , a

(Q)
2 , a

(Q)
3

)
, W q =

(
a

(q)
1 , a

(q)
2 , a

(q)
3

)
, (2.76)

which can be used to diagonalize the effective Yukawa matrix, yielding

λq = U †
q Y eff

q W q =


√

2
v diag(mu,mc,mt), for q = u

√
2

v diag(md,ms,mb), for q = d
. (2.77)

As comprehensively shown in [28], the elements of the matrices U q and W q are given
to leading order in hierarchies by

(Uq)ij = (uq)ij


F (cQi

)
F (cQj

) , i ≤ j
F (cQj

)
F (cQi

) , i > j
, (Wq)ij = (wq)ij e

iφj


F (cqi )
F (cqj ) , i ≤ j
F (cqj )
F (cqi ) , i > j

, (2.78)

with coefficient matrices

uq =


1 (Mq)21

(Mq)11

(Yq)13
(Yq)33

− (Mq)?
21

(Mq)?
11

1 (Yq)23
(Yq)33

(Mq)?
31

(Mq)?
11

− (Yq)?
23

(Yq)?
33

1

 , wq =


1 (Mq)?

12
(Mq)?

11

(Yq)?
31

(Yq)?
33

− (Mq)12
(Mq)11

1 (Yq)?
32

(Yq)?
33

(Mq)?
13

(Mq)11
− (Yq)32

(Yq)33
1

 . (2.79)

The minor (Mq)ij denotes the determinant of a q-type Yukawa submatrix, where the
i-th row and j-th column has been removed. Moving along, one can express all SM
masses in dependence of Yukawa components and zero-mode profile functions [28],

mu = v√
2
|det(Y u)|
(Mu)11

|F (cQ1)F (cu1)|, md = v√
2
|det(Y d)|
(Md)11

|F (cQ1)F (cd1)|,

mc = v√
2

(Mu)11
(Y u)33

|F (cQ2)F (cu2)|, ms = v√
2

(Md)11
(Y d)33

|F (cQ2)F (cd2)|,

mt = v√
2
|(Y u)33||F (cQ3)F (cu3)|, mb = v√

2
|(Y d)33||F (cQ3)F (cd3)| . (2.80)

The experimental mass hierarchies in the up- and down-sector can be realized through
the functions F (cQ,u,d), which is in analogy to a mechanism named after Froggatt
and Nielsen [38]. In other words, the localization of the quark profiles in the bulk
allows for a geometrical explanation of the mass splittings, while the Yukawa matri-
ces Y u, Y d can have anarchic and O(1) entries solving the Yukawa HP in section
1.4. The implication for the possible values of the c-parameters is discussed in part
5.2.1 of chapter 5.

For the later numerical analysis, we will need to calculate the Wolfenstein param-
eters for a given set of 4D Yukawa matrices and bulk mass entries, the formulas can
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be found in [27] and read

λ = |F (cQ1)|
|F (cQ2)|

∣∣∣∣(Md)21
(Md)11

− (Mu)21
(Mu)11

∣∣∣∣ , A = |F (cQ2)|3

|F (cQ1)|2|F (cQ3)|

∣∣∣∣∣∣∣
(Yd)23
(Yd)33

− (Yu)23
(Yu)33[

(Md)21
(Md)11

− (Mu)21
(Mu)11

]2
∣∣∣∣∣∣∣ ,

ρ̄− iη̄ = (Yd)33(Mu)31 − (Yd)23(Mu)21 + (Yd)13(Mu)11

(Yd)33(Mu)11
[

(Yd)23
(Yd)33

− (Yu)23
(Yu)33

] [
(Md)21
(Md)11

− (Mu)21
(Mu)11

] . (2.81)

Note that the expression for ρ̄ and η̄ does not involve any zero-mode profile, therefore
we automatically obtain values of order one in agreement with their experimental
values in table B.1. On the basis of (2.80) and (2.81), we can express eight of the
zero-mode profile functions in terms of the quark masses, Yukawa entries and the
cu3 profile function. The necessary relations are given by

|F (cQ1)| = λ∣∣∣ (Md)21
(Md)11

− (Mu)21
(Mu)11

∣∣∣ |F (cQ2)|, |F (cQ3)| =

∣∣∣ (Yd)23
(Yd)33

− (Yu)23
(Yu)33

∣∣∣
Aλ2 |F (cQ2)|

|F (cq1)| =
√

2mq1

v

|(Mu)11|
∣∣∣ (Md)21

(Md)11
− (Mu)21

(Mu)11

∣∣∣
λ|det(Y u)|

1
|F (cQ2)|

|F (cq2)| =
√

2mq2

v

|(Yu)33|
|(Mu)11|

1
|F (cQ2)|

,

|F (cq3)| =
√

2mq3

v

Aλ2

|(Yd)33|
∣∣∣ (Yd)23

(Yd)33
− (Yu)23

(Yu)33

∣∣∣ 1
|F (cQ2)|

. (2.82)

Parameter Counting

Additional fundamental parameters in the RS model, compared to the SM, are the
hermitian 3 × 3 bulk mass matrices MQ,u,d. They introduce Nc = (18, 9) param-
eters19, that are supplemented with the NY = (18, 18) parameters from the quark
Yukawa matrices. As in the SM, when restricting to the quark sector, see (1.72),
the global symmetry group GY = U(3)Q × U(3)u × U(3)d with NGY

= (9, 18) gen-
erators is broken by the Yukawa terms to the abelian subgroup HY = U(1)B with
NHY

= (0, 1), resulting in20

Nphys = NY +Nc − (NGY
−NHY

) = (27, 10) (2.83)

physical parameters [39]. We end up with 27 moduli and ten phases. The moduli
can be identified in the ZMA with the six quark masses, the twelve mixing angles
appearing in Uu,d, W u,d and the nine zero-mode profiles F (cQ,u,d). One of the ten
phases can be traced to the CKM phase.
19A general N × N hermitian matrix has N(N + 1)/2 real parameters and N(N − 1)/2 complex

phases.
20The generalized formula for Nf fermion generations reads, Nphys =

(
Nf (2Nf +3), (Nf −1)(2Nf −

1)
)
. A detailed discussion can be found in [28].
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2.2.5. Quarks Coupling to Gluons and KK Excitations

This subsection introduces the techniques and Feynman rules to calculate tree-level
diagrams of quarks exchanging a tower of gluon particles, since this will be relevant
in subsequent chapters. We start with the general 5D Lagrangian for quarks where
DM represents the covariant derivative in (2.27). For our purpose, the coupling of
the 5D gluon to quarks is of relevance and the corresponding Lagrangian is given by

LGqq =
√
|G|gs5

(
Q̄ΓmEM

m T aGa
MQ+

∑
q=u,d

q̄cΓmEM
m T aGa

Mqc
)

= gs5 e
−3σ(φ) ∑

q=u,d

{
q̄
(
γµGa

µ + iγ5Ga
5e

−σ(φ))T aq

+ q̄c(γµGa
µ + iγ5Ga

5e
−σ(φ))T aqc

}
(2.84)

where we inserted the RS vielbein and used Q = (u, d)> in the second step. Based
on (2.84), we can read off the vertex rule expressed in 4D momentum space-time and
in position space for the fifth coordinate, yielding

.

..q

.q
.G

.M,a iV G,a
(5),M = igs5 e

−3σ(φ)(γµδ
µ
M + iγ5δ5

Me−σ(φ))T a,

(2.85)

where the same rule also applies in case of the singlet quarks qc. In order to describe
the exchange of a 5D gluon, we need the corresponding propagator DG,MN

ξG,ab (p, φ, φ′),
which will be derived as part of a more general solution within the next section. We
just state the Feynman rule,

.. .N, b.M,a
.G, p

iDG,MN
ξG,ab (p, φ, φ′) . (2.86)

In the following, we want to consider tree-level diagrams with two incoming and two
outgoing quarks, exchanging a SM gluon and its KK excitations. Such a diagram
can be extracted from a 5D amplitude with external 5D quark fields q, qc, q′ and q′c

as shown on the left-hand side of fig. 2.2. When we assign incoming and outgoing
momenta p1, p2 and −p3, −p4 respectively, we can write the total amplitude as

−iMG =
∫ π

−π
dφ

∫ π

−π
dφ′ r2

{[
q̄(p1, φ)iV G,a

(5),M (φ)q(p2, φ) + q̄c(p1, φ)iV G,a
(5),M (φ)qc(p2, φ)

]

DG,MN
ξG,ab (p, φ, φ′)

[
q̄′(p3, φ

′)iV G,b
(5),N (φ′)q′(p4, φ

′) + q̄′c(p3, φ
′)iV G,b

(5),N (φ′)q′c(p4, φ
′)
]}
,

(2.87)

where p = p1 + p2 = −(p3 + p4). For instance, let us extract the 4D diagram, shown
on the right-hand side of fig. 2.2, where KK gluons are exchanged between the 4D
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.

.

.q′c

.q′c

.q

.q

.q′

.q′

.q

.q

.q′c

.q′c

.qc

.qc

.q′

.q′

.qc

.qc

.q(m)

.q(n)

.q′(m′)

.q′(n′)

Figure 2.2.: From the four 5D diagrams on the left-hand side, exchanging a boson (e.g. a
gluon) between doublet and singlet quarks, we can extract the desired diagram
with external 4D modes.

quark modes q(m), q(n), q′(m′) and q′(n′). Therefore we decompose the quark fields
in (2.87) by using the 4D Fourier-transformed version of (2.53). Keeping only the
relevant contributions that belong to the desired 4D diagram, we finally obtain in
t-notation

−iMG = i2πr g2
s

∫ 1

ε
dt

∫ 1

ε
dt′
{
DG,µν

ξG,ab(p, t, t
′)

×
[
χ(Q)†

m (t)χ(Q)
n (t) q̄(m)

L γµT
aq

(n)
L + χ(q)†

m (t)χ(q)
n (t) q̄(m)

R γµT
aq

(n)
R

]
×
[
χ

(Q′)†
m′ (t′)χ(Q′)

n′ (t′) q̄′(m′)
L γνT

bq
′(n′)
L + χ

(q′)†
m′ (t′)χ(q′)

n′ (t′) q̄′(m′)
R γνT

bq
′(n′)
R

]
+
(
M2

KK
tt′k2

)
DG,55

ξG,ab(p, t, t
′)

×
[
χ(Q)†

m (t)χ(q)
n (t) q̄(m)

L γ5T
aq

(n)
R + χ(q)†

m (t)χ(Q)
n (t) q̄(m)

R γ5T
aq

(n)
L

]
×
[
χ

(Q′)†
m′ (t′)χ(q′)

n′ (t′) q̄′(m′)
L γ5T

bq
′(n′)
R + χ

(q′)†
m′ (t′)χ(Q′)

n′ (t′) q̄′(m′)
R γ5T

bq
′(n′)
L

]}
,

(2.88)

where we used the expressions χ(Q,q)
n in (2.57), that contain the quark profiles. Con-

tributions from the mixed vector-scalar µ5-component of the 5D propagator have
been neglected in (2.88), since the gauge-fixing terms in (2.33) are chosen such, that
the scalar and vector components of a gauge boson do not mix with each other,
independently of the value for ξ. This can be seen explicitly from the differential
equation in (3.6) of the subsequent chapter.

Alternatively, one can directly work with four dimensional Feynman rules, which
are comprehensively listed in [40] and [41]. Concerning the gluon case, we have to
insert the Kaluza-Klein decompositions directly into the Lagrangian (2.84), integrate
over the fifth dimension and read off the rules, yielding
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.

.

.µ, a

.q(n)

.q(k)
.G(m)

igsT
aγµ

[(
V G

q

)
nmk

PL +
(
Ṽ G

q

)
nmk

PR

]
, (2.89)

.

.

.5, a

.q(n)

.q(k)
.G(m)

−gsT
a
[(
SG

q

)
nmk

PL −
(
S̃G

q

)
nmk

PR

]
, (2.90)

where

(
V G

q

)
nmk

=
√

2π
∫ 1

ε
dt χG

mχ
(Q)†
n χ

(Q)
k ,

(
Ṽ G

q

)
nmk

=
√

2π
∫ 1

ε
dt χG

mχ
(q)†
n χ(q)

n ,

(2.91)(
SG

q

)
nmk

=
√

2π
xG

m

∫ 1

ε
dt
(
∂tχ

G
m

)
χ(q)†

n χ
(Q)
k ,

(
S̃G

q

)
nmk

=
√

2π
xG

m

∫ 1

ε
dt
(
∂tχ

G
m

)
χ(Q)†

n χ
(q)
k ,

(2.92)

and xG
m ≡ mG

m/MKK. These overlap integrals determine if different quark flavors can
couple to the vertex. Inserting the flat SM gluon profile χG

0 = 1/
√

2π into (2.91), we
encounter the orthonormality condition for fermions (2.58), which requires m = n.
Thus, a flavor changing process through a SM gluon is not allowed at tree-level. But
once the profile is not a constant, which is the case for the gluon KK excitations
χG

n≥1, the integral does not vanish for m 6= n.

Concerning the propagators for the 4D modes G(n)
µ and ϕ

(n)
G , they are just given

by analogous expressions as in the SM, i.e.

.. .ν, b.µ, a
.G(n), p

iδab

−gµν + (1− 1
ξG

)pµpν/p2

p2 − (mG
n )2 + iε

, (2.93)

.. .b.a
.ϕ(n)

G , p
i

δab

p2 − ξG(mG
n )2 + iε

. (2.94)

Using the vertex rules (2.91), (2.92) as well as (2.93), (2.94) for the propagators, we
can work out the right diagram in fig. 2.2 and compare it to the five-dimensional
result in (2.88). We encounter sums over gluon profiles, referred to as the KK
towers, which correspond to the 5D propagators, whose derivation is the subject of
the following chapter.
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3. 5D Gauge Boson Propagator

In this chapter we calculate a general formula for the Feynman propagator of a five-
dimensional (spin one) boson, without restriction to specific boundary conditions.
The result is needed in chapter 5, when we extend the Minimal RS model by a new
gauge boson particle.

We begin the calculation for the case of a gluon field, but we will obtain a general
result that is also valid for the remaining gauge bosons. In quantum field theory,
the propagator is given by the two-point Green’s function. Since we already know
the 4D momentum propagator, it is convenient to perform a Fourier integration to
momentum space for the non-compactified four dimensional space-time, yielding the
propagator in mixed momentum/position space

iDG,MN
ξG,ab (p, t, t′) =

∫
d4x e−ipx〈0|T

{
GM

a (x, t)GN
b (0, t′)

}
|0〉, (3.1)

where we used translation invariance in the xµ directions. Inserting the decomposi-
tion (2.34) of the gluon field into (3.1) and using the momentum representation of
the 4D Feynman propagators in (2.93) and (2.94), we arrive at

DG,µν
ξG,ab(p, t, t

′) = δab
1
r

∞∑
n=0

χG
n (t)χG

n (t′)
−gµν + (1− 1

ξG
)pµpν/p2

p2 − (mG
n )2 + iε

(3.2)

for the vector components and at

DG,55
ξG,ab(p, t, t

′) = δab
1
r

∞∑
n=0

k2tt′

(mG
n )2

∂tχ
G
n (t) ∂t′χG

n (t′)
p2 − ξG(mG

n )2 + iε
(3.3)

for the scalar part of the 5D propagator. Mixed components do not appear, which
will be explained below. In principle, the 5D propagator represents a weighted
sum over KK profiles, evaluated at t and t′. The factor 1/r on the r.h.s. of (3.2)
and (3.3) ensures the correct mass dimension of −1 for the 5D propagator in mixed
momentum/position space. The derivation starts with the action for Ga

M , containing
the kinetic part (without self-interactions) and the gauge fixing part,

S
(5)
BS 3

∫
d4x

∫ rπ

−rπ

dx5

{
−
√
|G|
4

GKMGLN∂[KG
a
L]∂[MGa

N ] −
1

2ξG

[
∂µGa

µ − ξG∂5(e−2σGa
5)
]2}

,

(3.4)

with |G| ≡ |det(G)| = e−8σ and the gauge-fixing parameter ξG. Now we perform
several partial integrations to get rid of terms mixing Ga

µ and Ga
5. Appearing bound-

ary terms can be set to zero, when using the fact that Ga
5 with Ga

µ have opposite
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CHAPTER 3. 5D GAUGE BOSON PROPAGATOR

orbifold symmetries, leading to

S
(5)
BS 3

1
2

∫
d4x

∫ rπ

−rπ
dx5G

a
MKG,MN

ξG,ab Gb
N , (3.5)

with

KG,MN
ξG,ab = δab

∂α∂
αηµν − (1− 1

ξG
)∂µ∂ν − ∂5e

−2σ∂5η
µν 0

0 −e−2σ∂µ∂
µ + ξG e

−2σ∂5∂5e
−2σ

 ,

(3.6)

being the differential operator standing in between the gluon fields. The Feynman
propagator DG,ab

ξG,νρ is the inverse of KG,MN
ξG,ab , fulfilling∫

d4y

∫ rπ

−rπ
dy5 K̃

MN
ξG,ab(x, y)DG,bc

ξG,NR(y, z) = δacδ
M
R δ(5)(x− z), (3.7)

where we introduced K̃G,MN
ξG,ab (x, y) ≡ δ(x−y)KG,MN

ξG,ab . Since the differential operator
(3.6) is diagonal in the mixed vector-scalar components, we can split the derivation
of the propagator from (3.7) into two sections 3.1 and 3.2. From this point on, we
can drop the color indices as well as the label G and generalize the calculation.

3.1. Vector Components

Starting with the vector components of (3.7), we can transform the non-compact
dimensions of the equation to momentum space, such that[(

p2 + ∂x
5 e

−2σ(φx)∂x
5

)
ηµν − (1− 1

ξ
)pµpν

]
Dξ,νρ(p, φx, φz) = − 1

2r
δµ

ρ δ(φx − φz),

(3.8)

where ∂x
5 ≡ 1

r∂φx . The factor 1/2 on the r.h.s. appears, since we now restrict our
coordinate φ to the range [0, π] (instead of [−π, π]), which leads to the mentioned
normalisation factor for the delta-function δ(φx − φz). Transforming to t-notation,
see appendix A.2, we obtain[(

p2 +M2
KKt∂t

1
t
∂t

)
ηµν − (1− 1

ξ
)pµpν

]
Dξ,νρ(p, t, t′) = − Lt

′

2πr
δµ

ρ δ(t− t′), (3.9)

where we have further introduced t ≡ tx and t′ ≡ tz. In order to solve this equation,
we try the following ansatz [42]

Dξ,νρ(p, t, t′) = Aξ(p, t, t′)pνpρ

p2 +B(p, t, t′)(ηνρ −
pνpρ

p2 ), (3.10)

where we anticipatingly assume that only Aξ depends on the choice of gauge. Plug-
ging this ansatz into into (3.9), we encounter

pµpρ

[(
p2

ξ
+Dt

)
Aξ −

(
p2 +Dt

)
B

]
+ δµ

ρ p
2
[
(p2 +Dt)B + Lt′

2πr
δ(t− t′)

]
= 0,

(3.11)
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3.1. VECTOR COMPONENTS

while using the short notation Dt ≡ M2
KKt∂t

1
t ∂t for the differential operator. Since

each bracket has to vanish by itself, we only need to solve the following differential
equation for B, (

p2 +Dt

)
B(p, t, t′) = − Lt

′

2πr
δ(t− t′), (3.12)

while obtaining Aξ through the relation Aξ(p, t, t′) = B(p/
√
ξ, t, t′). We can rewrite

(3.12) as

(
t2∂2

t + t∂t + t2p2 − 1
) B(p, t, t′)

t
= − Ltt′

2πrM2
KK

δ(t− t′), (3.13)

whose homogeneous part is a Bessel differential equation of order one. The two
independent solutions, for t 6= t′, are given by

B>(p, t, t′) = t
[
C̃>

J (p, t′)J1(pt/MKK) + C̃>
Y (p, t′)Y1(pt/MKK)

]
for t > t′,

B<(p, t, t′) = t
[
C̃<

J (p, t′)J1(pt/MKK) + C̃<
Y (p, t′)Y1(pt/MKK)

]
for t < t′, (3.14)

with Bessel functions of the first and second kind, J1 and Y1 respectively, and co-
efficients C̃>

J,Y , C̃<
J,Y depending in general on t′ and on the momentum p ≡ √pµpµ.

Since the propagator Dµν
ξ (p, t, t′) must be symmetric in t and t′, we may write the

homogeneous solution of (3.12) as

B(p, t, t′) = N(p̃) t>t<
[
C>

J (p̃) J1(p̃t>) + C>
Y (p̃)Y1(p̃t>)

]
×
[
C<

J (p̃) J1(p̃t<) + C<
Y (p̃)Y1(p̃t<)

]
, (3.15)

where t> ≡ Max[t, t′], t< ≡ Min[t, t′] and p̃ ≡ p/MKK. The new coefficients C>
J,Y and

C<
J,Y do not depend on t′ any more. We further introduced an additional normali-

sation constant N , dependent on p̃, that can be fixed by integrating (3.12) along a
small ε-interval around t′ with respect to t (inside the bulk), yielding∫ t′+ε

t′−ε
dt
(
p2 +Dt

)
B(p, t, t′) = − Lt

′

2πr
. (3.16)

Evaluating both sides, we find for the normalization

N(p̃) = L

4rM2
KK

1
C>

J (p̃)C<
Y (p̃)− C<

J (p̃)C>
Y (p̃)

, (3.17)

which completes the solution for B(p, t, t′). Finally, (3.9) together with (3.15) and
(3.17), represents a fundamental solution for the propagator Dµν

ξ (p, t, t′), whose co-
efficients can be fixed by imposing boundary conditions at the UV and IR branes.
Such BCs are the same as the ones imposed for the profiles, since the propagator is
just the sum over profiles, see (3.2).
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CHAPTER 3. 5D GAUGE BOSON PROPAGATOR

Note further that the 5D propagators for A, W and Z bosons read analogously
to (3.2) when striking off the color indices and inserting the corresponding modes
and masses. In a similar manner, we can perform the above mentioned steps, that
will lead to the same fundamental solution. The boundary conditions in (2.37) then
determine the special solution.

To be more general, let us assume a gauge boson having a similar decomposition
as in (2.34) with profiles χn, fulfilling the following BCs

∂tχn(t)
∣∣
t=ε+ = bε χn(ε+), ∂tχn(t)

∣∣
t=1− = −b1 χn(1−) , (3.18)

with the boundary parameters bε and b1 for the UV (t = ε) and IR (t = 1) brane
respectively. Consequently the 5D vector propagator, being the sum of profiles,
admits the same conditions

∂tD
µν
ξ (p, t, t′)

∣∣∣
t=ε+

= bεD
µν
ξ (p, ε+, t′), ∂tD

µν
ξ (p, t, t′)

∣∣∣
t=1−

= −b1D
µν
ξ (p, 1−, t′),

(3.19)

where analogous expression hold for the variable t′, due to the symmetry properties.
Evaluating (3.19), we obtain the following solutions for the coefficients

C<
Y (p̃) = p̃J0(p̃ε)− bεJ1(p̃ε), C>

Y (p̃) = p̃J0(p̃) + b1J1(p̃),
C<

J (p̃) = −p̃Y0(p̃ε) + bεY1(p̃ε), C>
J (p̃) = −p̃Y0(p̃)− b1Y1(p̃), (3.20)

which depend on the boundary parameters bε and b1. Note that they are not unique
by themselves, but they are sufficient to completely specify the propagator solution,
due to the symmetry in t and t′. We distinguish three types of boundary conditions,
that can occur at each of the two branes,

Dirichlet (D): χ(t)|brane = 0, (3.21)
Neumann (N): ∂tχ(t)|brane = 0, (3.22)
Mixed (M): ∂tχ(t)|brane 6= 0 . (3.23)

In this notation, the photon and gluon have profiles with (NN) boundary conditions,
while the massive Z and W bosons have profiles of type (NM), see (2.37).

Since we will need to calculate low energy tree-level processes in the subsequent
chapters, we are especially interested in the limit p → 0. Starting with the (NN)
case, meaning a = b = 0, we expand the full solution around p = 0, yielding

Dµν
ξ (p, t, t′) =

−gµν + (1− 1
ξ )pµpν/p2

2πrp2

+ −gµν

4πrM2
KK

[
1− ε2

2L
+ Lt2< − t2

(1
2
− ln t

)
− t′2

(1
2
− ln t′

)]
+O(p2) .

(3.24)
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The first term is just the addend n = 0 of (3.2), when inserting the zero mode profile
of a massless particle, χ0 = 1/

√
2π. The second term in (3.24) is a finite expression

for the summation of massive KK particles in the limit p → 0 and is in agreement
with [27] (dropping the O(ε2) term), where the calculation was performed by using
the EOMs. Note that this term does not depend on the gauge parameter ξ. In the
RS model, each gauge boson (4D) mode for n ≥ 1 "eats" the corresponding scalar
excitation, which provides the longitudinal degree of freedom. We will see below,
that the 55-component of the propagator contains the gauge dependence.

For the remaining cases, assuming that at least one of the BCs is not of Neumann
type (a 6= 0 or b 6= 0), the limit p → 0 can be performed at once and yields the
solution

Dµν
ξ (p, t, t′) = −gµν L

4πrM2
KK

[
c0 + t2< + c1(t2 + t′2) + c2 t

2t′2
]

+O(p2), (3.25)

where c0, c1 and c2 are functions of the boundary parameters bε and b1. They are
given by

c0(bε, b1) = ε(2 + b1)(2− bεε)
2(bε + b1ε)− bεb1(ε2 − 1)

, c1(bε, b1) = − b1ε(2− bεε)
2(bε + b1ε)− bεb1(ε2 − 1)

,

c2(bε, b1) = − bεb1
2(bε + b1ε)− bεb1(ε2 − 1)

, (3.26)

and will play an important role in the analysis of chapter 5.

As an example, let us consider the W or Z boson. Their BCs, see (2.37), can be
expressed in t-notation as

bε = 0, b1 =
rπM2

W,Z

2Lε2
=
Lm2

W,Z

M2
KK

, (3.27)

where we used (2.32) for M2
W,Z and m2

W = v2g2/4 as well as m2
Z = v2(g2 + g′2)/4 to

rewrite the IR boundary condition. Based on this notation, the propagator (3.25)
takes the following form

Dµν
ξ (p, t, t′) = −gµν

(
1

2πm2
W,Z

+ L

4πM2
KK

[
1− t2>

])
+O(p2), (3.28)

which is the exact expression, compared with the approximate result in [27].

3.2. Scalar Components
The scalar 5D propagator is the solution to the 55-component of the differential
equation in (3.7),(

p2e−2σ(φx) + ξe−2σ(φx)∂x
5∂

x
5 e

−2σ(φx)
)
D55

ξ (p, φx, φz) = 1
2r
δ(φx − φz) . (3.29)
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CHAPTER 3. 5D GAUGE BOSON PROPAGATOR

Performing the same steps leading from (3.8) to (3.9), we can stick to the t-notation
and find [

p2 + ξ M2
KKt∂tt∂t

1
t2

]
D55

ξ (p, t, t′) = Lt′3

2πrε2
δ(t− t′) (3.30)

After some simple manipulations, this equation can be rewritten as[
t2∂2

t + t∂t + p2t2

ξM2
KK

]
ξD55

ξ (p, t, t′)
t2

= Lt′3

2πrM2
KKε

2 δ(t− t
′), (3.31)

where the left bracket contains a Bessel differential operator of order zero. Solutions
contain superpositions of the Bessel functions J0 and Y0. Considering the symmetry
under exchange of t and t′, the homogeneous solution to (3.31) can be expressed as

D55
ξ (p, t, t′) = N(p̂) t

2
>t

2
<

ξ

[
C>

J (p̂) J0(p̂ t>) + C>
Y (p̂)Y0(p̂ t>)

]
×
[
C<

J (p̂) J0(p̂ t<) + C<
Y (p̂)Y0(p̂ t<)

]
, (3.32)

with the normalization constant N(p̂) and p̂ ≡ p/(
√
ξMKK). In analogy to the vector

case, matching to the δ-function in (3.31) yields

N(p̂) = − Lk2

4πrM4
KK

1
C>

J (p̂)C<
Y (p̂)− C<

J (p̂)C>
Y (p̂)

. (3.33)

This completes the fundamental solution, which is also valid for gauge bosons like
the A, W and Z. The scalar propagator is the sum of profile derivatives. Thus, in
the gluon case, the (NN) conditions translate into Dirichlet-Dirichlet (DD) BCs at
both branes

∂tD
55
ξ (p, t, t′)

∣∣∣
t=ε+,1−

= 0, (3.34)

and analogously for t′, which can be evaluated on (3.32), thus fixing the coefficients
to

C<
Y (p̂) = J0(p̂ε), C>

Y (p̂) = J0(p̂),
C<

J (p̂) = −Y0(p̂ε), C>
J (p̂) = −Y0(p̂) . (3.35)

Inserting these into (3.32) and expanding around small momenta p = 0 gives the
following solution for the scalar propagator

D55
ξ (p, t, t′) = −1

ξ

k2 t2>t
2
<

2πrM4
KK

ln(t>) [L+ ln(t<)] +O(p2), (3.36)

which inherits the gauge dependence. When performing tree-level calculations, we
will work in unitary gauge ξ → ∞, allowing us to discard the exchanging scalar
contributions in (2.88).
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4. RS Flavor Problem
The Minimal Randall-Sundrum model admits explanations for the Gauge and Yukawa
Hierarchy Problems, which makes it, from the theoretical viewpoint, more preferable
than the Standard Model. Still, in order to measure New Physics effects at collider
experiments, the RS model must make predictions at (currently) reachable energy
ranges. This depends on the energy scale MKK, which sets the mass scale for the
lowest modes of the KK particles, for instance mG

1 = 2.448MKK in case of the first
gluon mode. To obtain observable effects, we need to allow for MKK values in the
few TeV range, MKK ∼ 1-2 TeV. At the same time, one has to reproduce all previous
measurements that are in good agreement with the SM predictions. Concerning the
flavor sector, strong tensions arise only for a few CP violating observables ("little
CP problem") that push the MKK scale up to higher values, making the RS model
phenomenologically less attractive. On the one hand, there are the flavor changing
observables εK and ε′/εK [43], while on the other hand there is the flavor diagonal
electric dipole moment of the neutron (nEDM) [44]. In the following, we will con-
centrate on the flavor-changing εK observable1 and on its impact on the MKK scale
within the Minimal RS model, which we will refer to as the RS flavor problem. This
will give us the necessary background knowledge for the chapters 5 and 6.

We begin this chapter by defining the CP violating observable εK and by re-
lating it to a calculable matrix element (section 4.1). In order to parametrize NP
contributions, we introduce a general effective Hamiltonian in section 4.2. Within
the SM, we explain the GIM mechanism (section 4.3.1), which effectively suppresses
flavor-changing processes, and then perform the leading order calculation for K0-K̄0

mixing (section 4.3.2). It is remarkable that the RS model does also admit an intrin-
sic suppression mechanism, referred to as the RS GIM mechanism (section 4.4.2),
that works well for all remaining observables, see for instance [27] and [45]. Still
the suppression is not sufficient in case of εK and we will give the main reason in
section 4.4.3, augmented by a short comment on existing proposals to deal with the
RS flavor problem.

4.1. Indirect CP Violation in the Kaon Sector

We consider the neutral Kaon sector consisting of the flavor eigenstates K0 = s̄d
and K̄0 = d̄s. They transform under a CP transformation as

CP |K0〉 = |K̄0〉, CP |K̄0〉 = |K0〉, (4.1)
1We deal with the obervable εK , since it is more restrictive than ε′/εK .
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where we have chosen the unphysical CP phase ηCP = 1. Both states can mix with
each other and we can express their mass eigenstates by the linear combinations2

|Kl〉 = p|K0〉+ q|K̄0〉, |Kh〉 = p|K0〉 − q|K̄0〉, (4.2)

where Kh denotes the heavier and Kl the lighter state. Possible CP violation can be
inferred from experiments, when measuring amplitudes of decaying physical Kaons
into two-pion states π0π0 and π+π−. For the definition of εK , it is convenient to
switch to the isospin basis3, in which the decay amplitudes read

AI = 〈(ππ)I |H|K0〉 = aI e
iδI , ĀI = 〈(ππ)I |H|K̄0〉 = a∗

I e
iδI , aI = |aI |eiφI , (4.3)

where I = 0, 2. There appear two types of complex phases. The phase coming from
the interaction term in the Lagrangian is often called "weak" phase and is denoted
here as φI . Another phase can emerge from intermediate on-shell states in the de-
cay process, which is usually dominated by strong interactions and therefore called
"strong" phase δI . Important is that AI and ĀI are related by a CP transformation
on the external states, which conjugates the weak but not the strong phase. Exper-
imentally, one finds for the magnitudes |A2/A0| ≈ 1/20, so one is allowed to neglect
decays into the I = 2 states. With this in mind, one can define the εK-observable by

εK ≡
〈(ππ)I=0|H|Klong〉
〈(ππ)I=0|H|Kshort〉

, (4.4)

with the experimentally motivated notation Klong = Kh and Kshort = Kl. The
fraction is chosen such that if CP is a good symmetry, then εK would vanish. To
analyze deviations of εK from zero, it is convenient to replace in (4.4) the mass
eigenstates with the flavor eigenstates by (4.2) and to use (4.3), yielding

εK = 1− λ
1 + λ

with λ = q

p

Ā0
A0
, (4.5)

where we have introduced the complex quantity λ. On the basis of λ, one can
distinguish three types of CP violation [46]:

|q/p| 6= 1: This results from mass eigenstates being different from CP eigenstates
and one speaks therefore of CP violation in mixing. Otherwise, supposing
|q| = |p| leads, with the exact eigenstates (4.9) in mind, to a further constraint,
which relates their phases by q = p∗. Knowing that a CP transformation
conjugates complex numbers q and p, we then find that the mass eigenstates
are also CP eigenstates, fulfilling CP |Kh〉 = −|Kh〉 and CP |Kl〉 = +|Kl〉.

2The exact form of the eigenstates is given in (4.9).
3Since a pion has isospin I = 1, a two pion system can have isospin 0 and 2 with the Clebsch-Gordan

decompositions |π0π0〉 =
√

1
3 |(ππ)I=0〉 −

√
2
3 |(ππ)I=2〉 and |π+π−〉 =

√
2
3 |(ππ)I=0〉 +√

1
3 |(ππ)I=2〉 .
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4.1. INDIRECT CP VIOLATION IN THE KAON SECTOR

|Ā0/A0| 6= 1: In our case, both amplitudes A0 and Ā0 can have a relative phase,
but are of equal magnitude. So, εK as defined in (4.4) is not sensitive on direct
CP violation.

Im λ 6= 0: This quantity relates the mixing phase from q/p to the weak phase of
the decay amplitude, Imλ = Im

(
e−2φIq/p

)
. It measures CP violation in the

interference between decays with and without mixing.

After having introduced εK , we have to link the definition of εK to a matrix element,
that allows us to calculate the contributions from theory [29]. Therefore, we start
with the time-evolution of the two flavor states K0 and K̄0, which is given by a
Schrödinger-like equation4

i
d

dt

|K0(t)〉

|K̄0(t)〉

 = H

|K0(t)〉

|K̄0(t)〉

 , (4.6)

where H is a time-independent 2× 2 complex matrix, which can always be decom-
posed in a hermitian and anti-hermitian part

H = M − i

2
Γ =

M11 − i
2Γ11 M12 − i

2Γ12

M∗
12 − i

2Γ∗
12 M22 − i

2Γ22

 , (4.7)

with the mass matrix M = M † and the decay matrix Γ = Γ†. Employing CPT
invariance further leads to the relations

M11 = M22, Γ11 = Γ22 . (4.8)

We are interested in the physical states, so we diagonalize (4.7) including (4.8) and
find for the eigenvalues and corresponding mass eigenstates [48]

λh = (M11 + ReQ)− i

2
(Γ11 − 2 ImQ), |Kh〉 = Nε̄[(1 + ε̄)|K0〉 − (1− ε̄)|K̄0〉],

λl = (M11 − ReQ)− i

2
(Γ11 + 2 ImQ), |Kl〉 = Nε̄[(1 + ε̄)|K0〉+ (1− ε̄)|K̄0〉],

(4.9)

withQ = [(M12 − iΓ12/2)(M∗
12 − iΓ∗

12/2)]1/2 and normalizationNε̄ = [2(1+|ε̄|2)]−1/2.
Comparing (4.9) with the eigenstates in (4.2), we can identify p = Nε̄(1 + ε̄) and
q = Nε̄(1− ε̄). The complex quantity ε̄ can be calculated from one of the eigenvalue
equations, for instance

(H − λh1)

1 + ε̄

1− ε̄

 = 0 ⇒ 1− ε̄
1 + ε̄

= ∆MK − i∆ΓK/2
2M12 − iΓ12

= 2M∗
12 − iΓ∗

12
∆MK − i∆ΓK/2

,

(4.10)
4This formula is based on the Weisskopf-Wigner approximation in [47].
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where we introduced the Kaon mass and decay-width differences

∆MK ≡ 2 ReQ, ∆ΓK ≡ −4 ImQ. (4.11)

Solving (4.10) for ε̄, we find

ε̄ = 2M12 − iΓ12 −∆MK + i∆ΓK/2
2M12 − iΓ12 + ∆MK − i∆ΓK/2

. (4.12)

Before further simplifying this expression, we will relate ε̄ to εK . Inserting the mass
eigenstates (4.9) into the definition (4.4), we obtain

εK = (1 + ε̄)a0 − (1− ε̄)a∗
0

(1 + ε̄)a0 + (1− ε̄)a∗
0

= ε̄Re a0 + i Im a0
Re a0 + iε̄ Im a0

= ε̄+ iξ

1 + iε̄ξ
≈ ε̄+ iξ, (4.13)

with ξ ≡ Im a0/Re a0 and where we used the experimental value of εK = O(10−3)
to deduce that ε̄ξ � 1 in the last step. Proceeding with ε̄, it is convenient to derive
the following approximations:

Im M12 � Re M12 & Im Γ12 � Re Γ12:
Using the equalities in (4.10), we can deduce from(1− ε̄

1 + ε̄

)2
= 2M∗

12 − iΓ∗
12

2M12 − iΓ12
, (4.14)

knowing ε̄ � 1, that the imaginary parts of M12 and Γ12 are small compared
to the real parts.

∆MK ≈ 2 Re M12 & ∆Γ ≈ 2 Re Γ12:
Both relations can be obtained from (4.11), when we use the above approxi-
mation for the imaginary parts in Q, since

Q ≈
[(

ReM12 −
i

2
Re Γ12

)(
ReM∗

12 −
i

2
Re Γ∗

12

)]1/2
= ReM12 −

i

2
Re Γ12 .

(4.15)

∆ΓK ≈ −2∆M :
This approximation can be justified when comparing the experimental values
for the mass and decay differences

∆MK = 3.4833 10−15 GeV [11], ∆ΓK = −7.4 10−15 GeV [49]. (4.16)

(Im Γ12/ Re Γ12) ≈ −2ξ:
The off-diagonal element of the decay matrix involves decays into intermediate
on-shell states. In our case with one possible state (ππ)0, we have

Γ12 ∝ 〈K0|H|(ππ)0〉 〈(ππ)0|H|K̄0〉 = (a∗
0)2, (4.17)
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where we used (4.3) in the second step. Therefore we can write

Im Γ12
Re Γ12

= Im(a∗
0)2

Re(a∗
0)2 = −2ξ

1− ξ2 ≈ −2ξ, (4.18)

since ξ � 1.

With these approximations at hand, we can proceed with ε̄ in (4.12), yielding

ε̄ ≈ 2i ImM12 + Im Γ12
2 ReM12 − iRe Γ12 + ∆MK − i∆ΓK/2

≈ 1
1 + i

(
i ImM12
∆MK

+ Im Γ12
−2 Re Γ12

)
≈ 1

1 + i

(
i ImM12
∆MK

+ ξ

)
, (4.19)

which can be inserted into (4.13) to obtain

εK ≈
1

1 + i

(
i ImM12
∆MK

+ ξ

)
+ iξ = i

1 + i

( ImM12
∆MK

+ ξ

)
≈ eiπ/4
√

2∆MK

(ImM12 + 2ξReM12) . (4.20)

The term ReM12 is suppressed by ξ and can be shifted into the prefactor, including
the replacement of the approximate phase π/4 with its experimental phase φε, see
[50]. We also replace the Kaon mass-difference ∆MK by its experimental value,
yielding the final form

εK = κεe
iφε

√
2(∆MK)exp

Im〈K0|H|K̄0〉, (4.21)

with κε = 0.92±0.02 and φε = (43.51±0.05)◦ [50]. The matrix element on the r.h.s.
of (4.21) is the quantity, which we have to calculate.

4.2. Effective Hamiltonian for K0-K̄0 mixing

In order to calculate matrix elements with K0 and K̄0 as external states, we make
use of the effective field theory concept, see section 1.3. We can expand our effective
Hamiltonian describing K0-K̄0 mixing, into the product of Wilson coefficients with
four quark operators. A general parametrization 5 is given by [27]

H∆S=2
eff =

5∑
i=1

Ci(µ)Qi(µ) +
3∑

i=1
C̃i(µ)Q̃i(µ) + h.c., (4.22)

5The operators Qi, Q̃i form a basis, chosen such as to describe the process K̄0 → K0.
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with the operator basis

Q1 = (d̄Lγ
µsL)(d̄LγµsL), Q̃1 = (d̄Rγ

µsR)(d̄RγµsR),
Q2 = (d̄RsL)(d̄RsL), Q̃2 = (d̄LsR)(d̄LsR),

Q3 = (d̄α
Rs

β
L)(d̄β

Rs
α
L), Q̃3 = (d̄α

Ls
β
R)(d̄β

Ls
α
R),

Q4 = (d̄RsL)(d̄LsR),

Q5 = (d̄α
Rs

β
L)(d̄β

Ls
α
R), (4.23)

where a summation over color indices α and β is implied. In case they are omitted,
a contraction within the Dirac bilinears is understood.

Concerning the Randall-Sundrum Model, the strategy is to calculate the relevant
leading order amplitudes that contribute to K0-K̄0 mixing. We match these to the
general operator basis above and read off the Wilson coefficients, evaluated at the
New Physics scale in the RS model, which is MKK. In order to perform the renor-
malization group (RG) running from the high scale MKK to the low hadronic scale of
2 GeV, we fall upon the work done in [51]. Their running formula is based on calcu-
lations of the anomalous dimension matrix (ADM), which can be extracted from the
effective diagrams including QCD corrections, for instance the three diagrams in fig
4.1 at leading order. Actually the formula includes next-to-leading order ADMs from

.

.

Figure 4.1.: One loop QCD corrections to an effective four-quark vertex.

[52]. After the RG running, we multiply the coefficients with the hadronic matrix
elements 〈K0|Qi|K̄0〉 and 〈K0|Q̃i|K̄0〉, which can be obtained from lattice calcula-
tions. The concrete implementation of these steps is explained in the numerical part
5.2.2 of the subsequent chapter.

4.3. Observable εK in the SM

4.3.1. GIM Mechanism

The GIM mechanism, going back to Glashow, Iliopolous and Maiani [53], can effi-
ciently suppress flavor-changing neutral current processes. Such a process involves in
the SM at least two W boson vertices that are accommodated by the CKM factors
λ

(kl)
i ≡ V ∗

ilVik, where i ∈ {u, c, t} and k, l ∈ {d, s, b} with k 6= l (considering here
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.

.

.i.k .l

.W .W

external down-type quarks). Corresponding Feynman amplitudes are then propor-
tional to the sum ∑

i=u,c,t

λ
(kl)
i F (mi) (4.24)

where the function F depends on the mass of the internal quark propagator. In case
of

• an unitary CKM matrix: λ(kl)
u + λ

(kl)
c + λ

(kl)
t = δkl,

• degenerate up-type quark masses,

the sum in (4.24) vanishes and FCNC processes are completely forbidden to all orders.
So, the size of breaking is mainly given by the disparity of the quark masses, which
is more distinctive in the up-quark sector. This is the reason why K0-K̄0 mixing
plays an important role in the investigation of flavor-changing neutral processes.

4.3.2. Leading Order Calculation

In the Standard Model, FCNC processes can only occur at loop-level via the in-
terchange of W± bosons. For K0-K̄0 mixing, the eight box diagrams in figure 4.2
contribute to the mixing of neutral Kaons and Antikaons, where φ± are the charged
scalars, that represent the longitudinal components of W±. All amplitudes can be

.

.

.p2−→ .
p′

2−→

.p1−→ .
p′

1−→

.a.)
.dL .sL.(u, c, t)L

.(u, c, t)L.sL .dL

.W .W

.b.)
.dL .sL.(u, c, t)L

.(u, c, t)L.sL .dL

.W .φ

.c.)
.dL .sL.(u, c, t)L

.(u, c, t)L.sL .dL

.φ .φ

Figure 4.2.: Displayed are three types of box diagrams, contributing at leading order to K0-
K̄0 mixing. For the diagrams a.) and c.), there exist further ones with the inner
box rotated by 90◦. In case b.), there are four possibilities that give topologically
different diagrams. The four-momenta shall be spaced everywhere as in diagram
a.).

matched to the four-point interaction operator Q1 = 1
4 d̄γ

µ(1 − γ5)s d̄γµ(1 − γ5)s
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of the effective Hamiltonian in (4.23). It is convenient to parametrize the Wilson
coefficient (C1 = CSM

1 ) by

CSM
1 = 1

4
G2

F

π2 M
2
W

∑
i,j=u,c,t

V ∗
idVisV

∗
jdVjsF0(xi, xj), (4.25)

where the function F0(xi, xj) corresponds to a given box diagram with i and j quark
exchanges and depends on the squared mass ratios of the fermions running through
the loop, xi,j ≡ m2

i,j/M
2
W. The subscript "0" indicates that QCD corrections are not

included. Since all calculations can be performed in a similar way, it is sufficient
to restrict the explicit calculation to one of the diagrams. We choose diagram b.)
in figure 4.2, involving an unphysical charged scalar and a W boson. When draw-
ing upon the Feynman rules in ’t Hooft-Feynman gauge, as summarised in [5], the
corresponding amplitude in its full form reads

−iMb.) = 1
4

∫
d4k

(2π)4 ūd(p′
1)
( −ig

2
√

2MW

[md(1− γ5)−mi(1 + γ5)]V ∗
id

)
i(/p′

1 − /k +mi)
(p1 − k)2 −m2

i + iε

(
ig

2
√

2
γµ(1− γ5)Vis

)
vs(p′

2)

i

k2 −M2
W + iε

−i
(p1 + p2 − k)2 −M2

W + iε

v̄d(p2)
(
ig

2
√

2
γµ(1− γ5)V ∗

jd

)
i(/p1 − /k +mj)

(p1 − k)2 −m2
j + iε( −ig

2
√

2MW

[ms(1 + γ5)−mj(1− γ5)]Vjs

)
us(p1), (4.26)

where ud, us and vd, vs are the Dirac spinors describing particles and antiparticles
respectively. The amplitude (4.26) can be further simplified in the approximation
of taking all external momenta to be zero, as they are small compared to MW and
heavy quark masses. Then for (4.26), as well as for the remaining diagrams, the
extracted integral part reads

Iqrst =
∫

d4k

(2π)4
/kqr/kst + (mi)qr(mj)st

[k2 −M2
W + iε]2[k2 −m2

i + iε][k2 −m2
j + iε]

, (4.27)

with the Dirac indices q, r, s and t. Introducing Feynman parameters to combine the
denominators and using four-dimensional master integrals, which can be found for
instance in [19], (4.27) can be evaluated to

Iqrst = i

(4π)2M2
W

[
−1

2
(γα)qr(γα)stI1(xi, xj) + mimj

M2
W

I2(xi, xj)
]
, (4.28)
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where I1 and I2 are analytic functions in the mass ratios xi ≡
m2

i

M2
W

,

I1(xi, xj) = 1
2

[
1

(1− xi)(1− xj)
+ 1

(xi − xj)

(
x2

i ln xi

(1− xi)2 −
x2

j ln xj

(1− xj)2

)]
, (4.29)

I2(xi, xj) = −
[

1
(1− xi)(1− xj)

+ 1
(xi − xj)

(
xi ln xi

(1− xi)2 −
xj ln xj

(1− xj)2

)]
. (4.30)

For the considered amplitude (4.26), the term involving I1 vanishes due to zero d-
and s-quark masses, leaving us with the result

−iMb.) = −i G
2
F

(4π)2M
2
Wλ

(ds)
i λ

(ds)
j [2xixjI2(xi, xj)] ūdγµ(1− γ5)vs v̄dγ

µ(1− γ5)us,

(4.31)

were λ
(ds)
i ≡ V ∗

idVis for i = u, c, t. While comparing (4.31) with Heff = C1Q1,
one must account for the Wick contraction factors 2!2!, when expressing the spinor
products on the r.h.s of (4.31) in terms of corresponding operators. This explains
the factor 1/4 in front of (4.25). Extending the calculation and matching procedure
to all diagrams leads finally to

F0(xi, xj) = (2 + xixj) I1(xi, xj) + 2xixj I2(xi, xj), (4.32)

where the evaluated integrals I1 and I2 refer to (4.29) and (4.30) respectively. Now
we can use the unitarity condition λ(ds)

u +λ
(ds)
c +λ

(ds)
t = 0 to eliminate the up-quark

CKM entries, yielding

CSM
1 = G2

F

4π2M
2
W

(
λ2

tS0(xt, xt) + λ2
cS0(xc, xc) + 2λcλtS0(xc, xt)

)
, (4.33)

while introducing the basic Inami-Lim function [54]

S0(xi, xj) = F0(xi, xj) + F0(xu, xu)− F0(xu, xi)− F0(xu, xj), (4.34)

for i, j = c, t. Keeping only linear terms in xc � 1 and setting xu to zero, leads to
the same expressions as given in [49],

S0(xt) ≡ S0(xt, xt) ≈
4xt − 11x2

t + x3
t

4(1− xt)2 − 3x3
t ln xt

4(1− xt)3 ,

S0(xc) ≈ xc, S0(xc, xt) ≈ xc

[
ln xt

xc
− 3xt

4(1− xt)
− 3x2

t ln xt

4(1− xt)2

]
. (4.35)

At this stage, the GIM mechanism may be explored. The breakdown occurs at
the one loop level, due to the disparity of the up-type quark masses. The size of
this breakdown depends on the behavior of the basic functions in (4.35). For small
xi � 1, relevant for (i 6= t), S0(xi) is proportional to xi which implies a quadratic

61



CHAPTER 4. RS FLAVOR PROBLEM

suppression for light quarks. In the limit of large xi, S0(xi) ∝ xi, sizeable con-
tributions can occur for heavy quarks like the top. But in (4.33), the top part is
accommodated by the small CKM factor V ∗

tdVts, which mitigates the effect. Thus
the main contributions to εK arise from the exchange of two tops together with a
charm and a top.

The next step is to include QCD corrections for the diagrams, which can be looked
up for instance in [55] and [56]. At next-to-leading order, the εK parameter may then
be expressed as [49]

εK = CεB̂K Imλ∗
t {Reλ∗

c [η1S0(xc)− η3S0(xc, xt)]− Reλ∗
t η2S0(xt)} exp(iπ/4),

(4.36)

with correction factors ηi, a numerical constant Cε and the non-perturbative paramter
B̂K , that can be obtained from lattice calculations. Based on this formula one can
infer, from indirect constraints of a global unitarity triangle fit, a SM value of

|εSM
K | = (1.9± 0.4) 10−3 [57], (4.37)

where the dominant theoretical uncertainties arise from the lattice QCD parameter
B̂K . Within the errors, this value agrees with the experimental one

|εexp
K | = (2.229± 0.010) 10−3 [11] . (4.38)

Thus, the smallness of εK in the SM is based on the GIM mechanism in relation with
small CKM elements for the top quark contributions.

4.4. Observable εK in the Minimal RS Model

Contributions to the εK observable arise already at tree level in the RS model, from
s- and t-channel diagrams exchanging heavy modes of the gluon, photon, Z boson
and the Higgs particle, see fig. (4.3). These contributions make up ∆εRS

K , hence we
can write

εRS
K = εRS,Box

K + ∆εRS
K , (4.39)

where εRS,Box
K stems from box diagrams extending the SM diagrams in fig. 4.2, by

involving various 4D modes of quarks u(n), d(n) and bosons W (n), G(n), A(n), Z(n),
h(n). A complete calculation would be desirable, but is behind the scope of this thesis.
Instead we assume that the additional box diagrams are sufficiently suppressed for
two reasons6:

6 Another question concerns the convergence of the tower sums within each box, which can only
be settled by an explicit calculation.
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.

.

.+

.d

.s

.A(n≥1), Z(n), h

.G(n≥1)

.s

.d

.d

.s

.s

.d

Figure 4.3.: Both, s- and t-channel diagrams contribute to εK . The exchange of the massive
gluon tower gives the dominant part, as explained in section 4.4.3.

• Each box including at least one neutral gauge boson is suppressed by the
RS GIM mechanism, which is the analog to the SM GIM needed to suppress
FCNC processes. More details on the RS GIM mechanism will be given in
section 4.4.2.

• For each higher non-SM mode in the loop, its propagator contributes with
a factor 1/m2

n, resulting in a m2
W /m2

n suppression compared to the SM box
diagrams.

Still we need to translate the remaining Standard Model box diagrams in fig. 4.2 into
the RS framework by replacing the Fermi constant of the SM with the expression
within the RS model [27],

GRS
F√
2

= GSM
F√
2

(
mW

exp
mW

0

)2 [
1 +

(
mW

0
)2

2M2
KK

(
1− 1

2L

)
+O

((
mW

0
)4

M4
KK

)]
(4.40)

where mW
exp is the experimental W boson mass obtained from direct measurements

and mW
0 denotes its mass within the RS model. Note that mW

0 can be calculated by
solving the boundary conditions in (2.46).

Finally, for our purpose it should be viable to replace εRS,Box
K by the theoretical

value of the SM in (4.37), when corrected for the Fermi constant. Then, we can
proceed with the contributions to ∆εRS

K .

4.4.1. Wilson Coefficients

It is convenient to split the coefficients of the operator basis in (4.23) into

Ci = CRS,Box
i + CRS

i , (4.41)

and analogously for C̃i. As explained above, we replace CRS,Box
i by the coefficients

in the SM, where there is only CSM
1 non-vanishing. The additional tree level contri-

butions are incorporated in CRS
i and C̃RS

i , which are evaluated at the scale MKK.
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Let us sketch the calculation of the effective Hamiltonian for the diagram, that
exchanges a complete gluon tower. We start with equation (2.88) in section (2.2.5)
and take the limit of vanishing momenta7. When working in unitarity gauge ξG →∞,
the scalar propagator vanishes according to (3.36) and we find

HG
eff =2πLαs

M2
KK

∫ 1

ε
dt

∫ 1

ε
dt′
[1− ε2

2L2 + t2< − t2
1
L

(1
2
− ln t

)
− t′2 1

L

(1
2
− ln t′

) ]
×
[
χ

(D)†
1 (t)χ(D)

2 (t) d̄LγµT
asL + χ

(d)†
1 (t)χ(d)

2 (t) d̄RγµT
asR

]
×
[
χ

(D)†
1 (t′)χ(D)

2 (t′) d̄Lγ
µT asL + χ

(d)†
1 (t′)χ(d)

2 (t′) d̄Rγ
µT asR

]
. (4.42)

Here we directly see, which terms in the propagator can give rise to flavor-changing
transitions. The constant term, that is independent of t and t′, can be pulled out
of the integral and we can use twice the orthonormality condition for the quark
profiles in (2.58), giving no contribution for our ∆S = 2 process. Similarly, the
terms depending either on t or t′ can lead maximally to ∆S = 1 processes. So,
only the t2< term allows for nonzero Wilson coefficients. To obtain them, we have
to transform the four quark operators in (2.58) into the basis (4.23) by using the
relation [19]

T a
αβ ⊗ T a

γδ = 1
2

(
δαδδβγ −

1
Nc
δαβδγδ

)
with Nc = # colors, (4.43)

and the following Fierz identities for operators (appendix A in [5]),

(q̄i
Lγµq

j
L) (q̄k

Lγ
µql

L) = (q̄i
Lγµq

l
L) (q̄k

Lγ
µqj

L), (4.44)

(q̄i
Rγµq

j
R) (q̄k

Rγ
µql

R) = (q̄i
Rγµq

l
R) (q̄k

Rγ
µqj

R), (4.45)
(q̄i

Lγµq
j
L) (q̄k

Rγ
µql

R) = −2 (q̄i
Lq

l
R)(q̄k

Rq
j
L) . (4.46)

Note, that the labels i, j, k, l are only used to distinguish the field operators and that
one has to keep track of the color indices, when performing the transformations.
We receive contributions for CRS

1 , C̃RS
1 , CRS

4 and CRS
5 . In a similar manner, one

can proceed with the remaining diagrams in fig. 4.3 and determine the Wilson
coefficients, yielding [45]

CRS
1 = 4πL

M2
KK

(∆̃D)12 ⊗ (∆̃D)12

[
αs

2

(
1− 1

Nc

)
+
(
Qd

e

)2
αe +

(
T d

3 − s2
WQd

e

)2
αe

s2
W c2

W

]
,

C̃RS
1 = 4πL

M2
KK

(∆̃d)12 ⊗ (∆̃d)12

[
αs

2

(
1− 1

Nc

)
+
(
Qd

e

)2
αe +

(
s2

WQd
e

)2
αe

s2
W c2

W

]
,

CRS
4 = 4πL

M2
KK

(∆̃D)12 ⊗ (∆̃d)12 [−2αs] ,

7In this limit, the s- and t- channel diagrams yield the same contributions. Note that the resulting
factor of two, as well as the Wick contraction factor of 1/4 is already accommodated for in the
definition of the hadronic matrix elements. Otherwise (4.42) would have to be multiplied by 1/2.
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CRS
5 = 4πL

M2
KK

(∆̃D)12 ⊗ (∆̃d)12

[
2αs

Nc
− 4

(
Qd

e

)2
αe +

4s2
WQd

e

(
T d

3 − s2
WQd

e

)
αe)

s2
W c2

W

]
,

(4.47)

where Qd
e = −1/3, T d

3 = −1/2 and sW ≡ sin θW as well as cW ≡ cos θW . The expres-
sions in brackets refer to the contributions from KK gluons, KK photons and from
the Z0 boson and its KK excitations. A possible Higgs boson exchange is suppressed
additionally by O(v2/M2

KK) compared to (4.47) and therefore neglected.

The tensor structures appearing in (4.47) represent double integrals over the profile
functions of exchanged KK modes m,n and m′, n′ at each vertex. They are part of
a more general class of double integrals, which can be defined by

Õ1 ⊗ Õ2 ≡
2π2

L2ε2

∫ 1

ε
dt

∫ 1

ε
dt′ t2< Õ1(t) Õ2(t′), (4.48)

where Õ1 and Õ2 can be replaced by one of the following terms

(∆̃Q,q)mn = a(Q,q)†
m C(Q,q)

m C(Q,q)
n a(Q,q)

n + a(q,Q)†
m S(q,Q)

m S(q,Q)
n a(q,Q)

n , (4.49)
(ε̃Q,q)mn = a(q,Q)†

m S(q,Q)
m S(q,Q)

n a(q,Q)
n , (4.50)

(δ̃Q,q)mn = a(q,Q)†
m S(q,Q)

m S(q,Q)
n a(q,Q)

n , (4.51)

with Q ∈ {U,D} and q ∈ {u, d}. For instance, in case of the tensor structure
appearing in CRS

4 , we can use (4.48) with (4.49) and obtain the expression

(∆̃D)12 ⊗ (∆̃d)12 = 2π2

L2ε2

∫ 1

ε
dt

∫ 1

ε
dt′t2< (4.52)

×
[
a

(D)†
1 C

(D)
1 (t)C(D)

2 (t)a(D)
2 + a(d)†

m S
(d)
1 (t)S(d)

2 (t)a(d)
2

]
×
[
a

(d)†
1 C

(d)
1 (t′)C(d)

2 (t′)a(d)
2 + a

(D)†
1 S

(D)
1 (t′)S(D)

2 (t′)a(D)
2

]
.

Since we will encounter further overlap integrals in the subsequent chapter, con-
sisting of a single integration over t, we quote them here as well,

(∆Q,q)mn = 2π
Lε

∫ 1

ε
dt t2

[
a(Q,q)†

m C(Q,q)
m C(Q,q)

n a(Q,q)
n + a(q,Q)†

m S(q,Q)
m S(q,Q)

n a(q,Q)
n

]
,

(4.53)

(εQ,q)mn = 2π
Lε

∫ 1

ε
dt t2 a(q,Q)†

m S(q,Q)
m S(q,Q)

n a(q,Q)
n , (4.54)

(δQ,q)mn = 2π
Lε

∫ 1

ε
dt a(q,Q)†

m S(q,Q)
m S(q,Q)

n a(q,Q)
n . (4.55)

4.4.2. RS GIM Mechanism

In general, FCNC processes involve overlap integrals like the ones in (4.48) - (4.55).
Their size depends strongly on the bulk parameters cQi,qi . In the numerical analysis
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of chapter 5.2, we will encounter typical parameter values fulfilling

cQ3,u3 > −1/2, −3/2 < cQ1,Q2,u1,u2,d1,d2,d3 < −1/2, (4.56)

which lead by solving equation (2.63) to the correct SM masses. To obtain approx-
imations for the ∆-integrals, we insert the ZMA profiles into (4.53), perform the
integrations and assume cQi,ui,di

< −1/2 (not valid for the top), yielding

(∆A)mn ∼ (∆′
A)mn ∼ F (cAm)F (cAn), (4.57)

for A,B ∈ {U,D, u, d}. Since the δ- and ε-integrals involve the S profiles, which
vanish in the ZMA, we use (2.68) and perform the same steps as above, yielding

(δA)mn ∼ (εA)mn ∼ (ε′A)mn ∼
v2Y 2

?

M2
KK

F (cAm)F (cAn), (4.58)

where Y? just represents a typical 4D Yukawa entry of O(1). If additionally cAi +
cBj > −2 for all i, j ∈ {1, 2, 3} holds, one can approximate the tensor structures by

(∆̃A)mn ⊗ (∆̃B)m′n′ ∼ F (cAm)F (cAn)F (cBm′ )F (cBn′ ), (4.59)

More details can be found in [58]. As can be seen, all integrals are proportional to
several products of zero-mode profiles. Using (2.71) and ε ≡ e−krπ = e−L, these
products are exponentially suppressed for the assumed parameter range, yielding

F (cAm)F (cBn) ∼ e−L|1+cAm +cBn |, (4.60)

F (cAm)F (cAn)F (cBm′ )F (cBn′ ) ∼ e
−L
∣∣2+cAm +cAn +cBm′ +cBn′

∣∣
. (4.61)

which is referred to as the RS GIM mechanism.

4.4.3. Origin of the εRS
K Problem

Now we can come back to the εK observable in the Minimal RS model. As we
have mentioned in the introduction of this chapter, the flavor problem means that
when we calculate εRS

K via the coefficients in (4.47), we encounter values that are
disfavored by experiment, unless one raises the MKK scale up to energies, which are
phenomenologically undesirable. More details including plots will be given in the
numerical section of chapter 5.

In the following, we will estimate εK and highlight the origin of the flavor problem.
Therefore, we start with the Wilson coefficients CRS

1 , C̃RS
1 , CRS

4 and CRS
5 in (4.47),

which receive the main contributions from Feynman diagrams exchanging KK gluon
modes. Electroweak contributions are suppressed by αe(MKK)/αs(MKK) ∼ O(0.1),
since the Wilson coefficients are evaluated at the scale MKK. To estimate the down
quark tensor structures, we can use (4.59) and replace the zero-mode functions by
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their expressions in (2.82). Approximating the 4D Yukawa matrix entries with Y?,
we can derive the relations

(∆̃D)12 ⊗ (∆̃D)12 ∼
λ2

Y 4
?

F (cQ2)4, (∆̃D)12 ⊗ (∆̃d)12 ∼
2mdms

Y 2
? v

2 ,

(∆̃d)12 ⊗ (∆̃d)12 ∼
(2mdms

λv2

)2 1
F (cQ2)4 . (4.62)

Applying them to the tensor structures in the Wilson coefficients (4.47) and neglect-
ing electroweak contributions, we obtain

CRS
1 (µ) ∼ 4πL

M2
KK

αs(µ)
2

(
1− 1

Nc

)
λ2

Y 2
?

F (cQ2)4,

C̃RS
1 (µ) ∼ 4πL

M2
KK

αs(µ)
2

(
1− 1

Nc

)(2mdms

λv2

)2 1
F (cQ2)4

CRS
4 (µ) ∼ −NcC

RS
5 (µ) ∼ 4πL

M2
KK

2αs(µ)
(2mdms

Y 2
? v

2

)
. (4.63)

Using the median value F (cQ2) = −0.023 of our dataset in the numerical section
together with the values λ, md, ms at µ ≈ 1.5 TeV (see appendix B.1) and O(1)
Yukawa entries, we can estimate the ratios of the coefficients to

CRS
1 : C̃RS

1 : CRS
4 : CRS

5 ∼ 1 : 1/10 : 1 : 1 . (4.64)

They are of similar size, except for the coefficient C̃RS
1 , which is relatively suppressed

by a factor of O(10). In order to calculate the matrix element 〈K0|HRS
eff |K̄0〉, one

evolves the coefficients determined at the high scale of MKK down to 2 GeV and
multplies them with the hadronic matrix elements, see section 5.2.2 for more details.
This will lead to a relative weighting between the coefficients, such that

〈K0|HRS
eff |K̄0〉 ∝ CRS

1 + C̃RS
1 + 117 (CRS

4 + 1
Nc
CRS

5 ), (4.65)

which demonstrates the relevance of the Wilson coefficients CRS
4 and CRS

5 . The large
enhancement factor of roughly 117 is the real reason for the εK problem. With (4.65)
in mind, the main contribution to ∆εRS

K within the ZMA and for anarchic Yukawa
entries can be expressed by

|∆εRS
K | ∼

κε√
2(∆MK)

Cf

(
Nc + 1

Nc

)(8πLαs(MKK)
M2

KK

)(2mdms

Y 2
? v

2

)
, (4.66)

where Cf denotes the explicit RG and matrix element factor. The question is how one
can minimize the contributions in (4.66). At first glance, one may see two adjusting
screws:
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Yukawa Y?: A significant raise of the Yukawa matrix entries would shift the bulk
profiles in the direction of the UV brane, yielding smaller overlap integrals and
thus a suppression of ∆εRS

K . But one usually requires natural and perturbative8

Yukawa entries, meaning that they are of O(1). Furthermore, increasing Y?

leads to a tension with the ε′K/εK observable, where the contributing coeffi-
cients are proportional to the square of the Yukawa entries, see [43] for details.
Thus, the RS flavor problem remains.

Volume L: Another idea, proposed in [59], might be to lower the UV cutoff ΛUV
of the RS model to a value significantly below the Planck scale, allowing for a
smaller volume L = ln(ΛUV/MEW). But this will shift the bulk mass parame-
ters to smaller values, since they must still produce the correct SM masses in
(2.80). Once the condition cQ2 + cd2 < −2 is fulfilled, the approximation for
the tensor structures in (4.59) does not hold anymore and the ∆εRS

K estimation
(4.66) expires its validity. It turns out, see [58], that for smaller values than
L ≈ 8.2, the εK contribution even starts to increase exponentially.

Besides these obvious attempts, there is a further proposal to deal with the problem.

Aligned cdi parameters: A different proposal by Santiago [60] is to align all cdi

parameters, cd1 = cd2 = cd3 , in order to eliminate the flavor non-diagonal over-
lap integrals at leading order in v2/M2

KK. This can be seen from the following
term

a(d)†
m C(d)

m C(d)
n a(d)

n , (4.67)

which appears in the integrand of the CRS
4 , CRS

5 tensor structure in (4.52) (with
m = 1 and n = 2). Using the ZMA relations, we can rewrite the a(d) vectors
as the columns, see (2.76), of the unitary matrix W d, yielding

a(d)†
m C(d)

m C(d)
n a(d)

n ≈ 1
2

3∑
l=1

(
W †

d

)
ml

(
C(d)

m C(d)
n︸ ︷︷ ︸

∝ 1

)
ll

(
Wd

)
ln
, (4.68)

where a summation over the components is shown for clarity. Note that with
aligned parameters, the C(d) profiles are diagonal matrices with equal compo-
nents. We can use the unitarity of Wd yielding a final result proportional to the
Kronecker delta δmn, which renders the tensor structure flavor diagonal and
therefore eliminates the CRS

4 and CRS
5 coefficients within the ZMA. Remaining

terms are of order v2/M2
KK and can suppress sufficiently the ∆εRS

K contribu-
tion, see [27]. The problem with Santiago’s approach is that the mechanism is
very sensitive to small deviations from aligned masses cdi

. For instance, small
variations may be induced due to the renormalization group running of the
quark masses.

8Yukawa interactions receive one loop corrections, which can be estimated via naive dimensional
analysis. A discussion is given in [27], where some arguments are presented to mitigate the
usually adopted upper bound of |Y?| < π to |Y?| < 4π.
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In fact, there is no satisfactory proposal how to effectively suppress the dangerous
coefficients CRS

4 and CRS
5 of ∆εRS

K . A new idea, that extends the Minimal Randall-
Sundrum Model, will be the topic of the following chapter.
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5. Solving the RS Flavor Problem

This chapter presents a solution to mitigate the εK problem. The underlying idea
has been proposed by Martin Bauer, and together with Matthias Neubert we worked
out the final form [61]. After discussing this proposal in the beginning section 5.1,
we perform a numerical analysis in 5.2 and compare the new results with the original
fine-tuning issue.

5.1. Theoretical Approach

As mentioned in the previous chapter, we want to minimize/cancel the contributions
to the Wilson coefficients CRS

4 and CRS
5 , which belong to the operators (see (4.23))

Q4 = (d̄α
Rs

α
L)(d̄β

Ls
β
R) = −1

2
(d̄β

Lγµs
α
L)(d̄α

Rγ
µsβ

R), (5.1)

Q5 = (d̄α
Rs

β
L)(d̄β

Ls
α
R) = −1

2
(d̄β

Lγµs
β
L)(d̄α

Rγ
µsα

R) . (5.2)

In the second step we made use of the Fierz transformation in (4.46). Both operators
appear, when we calculate diagrams with oppposite quark chiralities on both vertices
(see figures below). To eliminate those gluon contributions, we may think of a new

.

. .

.dL

.sL

.sR

.dR

.dR

.sR

.sL

.dL

color mediating gauge boson G′a
µ (only used in this passage), having an axial coupling

between the down and strange quark,

d̄γµγ5T
aG′aµs = −d̄Lγ

µT aG′aµsL + d̄RγµT
aG′aµsR, (5.3)

where we used γ5PL/R = ∓PL/R with chirality projectors PL/R = (1 ∓ γ5)/2. In
the effective theory1, the above diagrams then give rise to the following four-quark
operator

(d̄Lγµγ5sL)(d̄Rγ
µγ5sR) = −(d̄LγµsL)(d̄Rγ

µsR), (5.4)

which comes with the opposite sign to the gluon contribution. As a result the
contributions from the gluon and G′ cancel, when we consider the coefficients CRS

4
1The field G′a

µ is assumed to be heavy and hence can be integrated out.
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and CRS
5 . So, the important feature is the axial coupling of a newly introduced

color mediating gauge boson. In the following, we will deal with a likewise extension
within the Minimal Randall-Sundrum model.

Extending the Color Group

We replace the bulk SU(3)c by the gauge group Gc ≡ SU(3)D × SU(3)S , leading to
the enlarged symmetry group (before SSB2)

G ≡ SU(3)D × SU(3)S × SU(2)L × U(1)Y , (5.5)

of our model. The SU(2)L doublet fields3 Qn ≡ (un, dn) transform as triplets under
SU(3)D and as singlets under SU(3)S . Reversely, the SU(2)L singlet fields uc,n, dc,n

transform as triplets under SU(3)S but are invariant under SU(3)D. So, the trans-
formation behavior under Gc can be stated as

Qn ∼ (3,1) and qc,n ∼ (1,3) for q = u, d . (5.6)

The transformation properties under the complete group G is summarized in table
6.1. Furthermore, Gc is gauged by the mediating octets GD and GS respectively,
changing the covariant derivative in 2.27 for the 5D quark fields to4

DM Q = (∂M − ig5W
i
Mτ i − ig′

5BMYQ − igD5(GD)a
MT a)Q, (5.7)

DM qc = (∂M − ig′
5BMYqc − igS5(GS)a

MT a) qc, (5.8)

with new five-dimensional gauge couplings gD5 and gS5.

Pseudo-Axial Gluon A

We are interested in the interactions between the quarks and the newly introduced
color octets. Replacing the covariant derivatives appearing in (2.52) with the ones in
(5.7) and (5.8), the relevant action takes the following form (compared with (2.84))

SGqq =
∫
dx5 e

−3σ
∑

q=u,d

[
gD5 q̄(GD)a

MγMT aq + gS5 q̄
c(GS)a

MγMT aqc
]
. (5.9)

The 5D gluon G must be a linear combination of GD and GS . So, we perform a
rotation to another basis {G,A} viaGD

GS

 =

cosϑ − sinϑ

sinϑ cosϑ

G
A

 , (5.10)

2The group Gc has to be broken down to the color group. It is not of relevance here, but will be
discussed in chapter 6.

3with generation index n = 1, 2, 3.
4In the following, we suppress the generation index n.
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with the mixing angle ϑ. Inserting (5.10) into (5.9), we obtain

SGqq =
∫
dx5 e

−3σ
∑

q=u,d

{
gD5 q̄

(
/G

a cosϑ− /Aa sinϑ
)
T aq

+ gS5 q̄
c
(
/G

a sinϑ+ /Aa cosϑ
)
T aqc

}
, (5.11)

with abbreviations /G ≡ GMγM and /A ≡ AMγM . To implement the gluon field, that
couples with equal strength gs5 to both fields q and qc, we demand

gs5 = gD5 cosϑ = gS5 sinϑ, (5.12)

and (5.11) finally becomes

SGqq =
∫
dx5 e

−3σ
∑

q=u,d

{
gs5
(
q̄ /G

a
T aq + q̄c /G

a
T aqc

)
+ gs5

(
− tanϑ q̄ /Aa

T aq + cotϑ q̄c /Aa
T aqc

)}
. (5.13)

The additional field A has an opposite sign coupling between the doublet and singlet
quarks, with a magnitude depending on the angle ϑ. We refer to this gauge boson
as the pseudo-axial gluon.

KK Decomposition

In a similar manner as for the other gauge bosons in (2.34), we decompose this field
into 4D modes and profiles, such that

Aa
µ(x, φ) = 1√

r

∞∑
n=0
A(n)a

µ (x)χA
n (φ), Aa

φ(x, φ) = 1√
r

∑
n

aA
nϕ

(n)a
A (x)∂φχ

A
n (φ), (5.14)

where a = 1, ..., 8. The coefficient aA
n = −1/mA

n can be determined by matching the
5D action to the 4D one, which is performed in section 6.1. The profile functions
χA

n (φ) fulfill the homogeneous equation (2.41) with boundary conditions, that we
will not specify at this stage. Assuming therefore general BCs, we set (in t-notation)

∂tχ
A
n (t)

∣∣
t=ε+ = bε χ

A
n (ε+), ∂tχ

A
n (t)

∣∣
t=1− = −b1 χ

A
n (1−) , (5.15)

with boundary parameters bε and b1. Note that when bε, b1 6= 0, the profile derivative
∂φχ(φ) has now kinks not only at φ = −π, π but also at φ = 0.

4D Feynman Rules

Since we want to calculate the axial-gluon contributions to the Wilson coefficients,
we need its Feynman rules. Therefore we insert the decomposition (5.14), in tandem
with (2.53) for the quark fields, into (5.13) and extract the following 4D rules
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.

.

.µ, a

.q(n)

.q(k)
.A(m)

igsT
aγµ

[(
V A

q

)
nmk

PL +
(
Ṽ A

q

)
nmk

PR

]
, (5.16)

.

.

.5, a

.q(n)

.q(k)
.A(m)

−gsT
a
[(
SA

q

)
nmk

PL −
(
S̃A

q

)
nmk

PR

]
, (5.17)

where

(
V A

q

)
nmk

= (2π)3/2

Lε

∫ 1

ε
dt χA

m

[
− tanϑa(Q)†

n CQ
n CQ

k a
(Q)†
k + cotϑa(q)†

n Sq
nSq

ka
(q)†
k

]
,

(
Ṽ A

q

)
nmk

= (2π)3/2

Lε

∫ 1

ε
dt χA

m

[
− tanϑa(Q)†

n SQ
n SQ

k a
(Q)†
k + cotϑa(q)†

n Cq
nCq

ka
(q)†
k

]
,

(5.18)(
SA

q

)
nmk

= (2π)3/2

LεxA
m

∫ 1

ε
dt
(
∂tχ

A
m

)[
− tanϑa(Q)†

n SQ
n CQ

k a
(Q)†
k + cotϑa(q)†

n Cq
nSq

ka
(q)†
k

]
,

(
S̃A

q

)
nmk

= (2π)3/2

LεxA
m

∫ 1

ε
dt
(
∂tχ

A
m

)[
− tanϑa(Q)†

n CQ
n SQ

k a
(Q)†
k + cotϑa(q)†

n Sq
nCq

ka
(q)†
k

]
,

(5.19)

and xA
m ≡ mA

m/MKK. Suppose that two SM quarks and the zero-mode A(0)
µ attach at

the vector vertex (5.16). For ϑ = 45◦, we find to leading order in O(v2/M2
KK), that

A(0)
µ couples with equal strength gs but opposite sign to left- and right-chiral quarks.

This would make A(0)
µ a canonical axial gluon. But, since the coupling depends on

the angle ϑ and on the profile overlap, we will refer to A(0)
µ or AM as the pseudo-axial

gluon in four or five dimensions.

Effective Hamiltonian

Let us now understand how the pseudo-axial gluon might suppress the contributions,
that result from mixed chirality diagrams. Working in unitary gauge (ξ → ∞), we
can compare the effective 5D Hamiltonian for the gluon

HG
eff =2πLαs

MKK

∑
q,q′

(2π
Lε

)2 ∫ 1

ε
dt

∫ 1

ε
dt′
[1− ε2

2L2 + t2< −
t2

L

(1
2
− ln t

)
− t′2

L

(1
2
− ln t′

)]
×
[
q̄LγµT

aqL + q̄RγµT
aqR + q̄c

LγµT
aqc

L + q̄c
RγµT

aqc
R

]
×
[
q̄′

LγµT
aq′

L + q̄′
RγµT

aq′
R + q̄′c

LγµT
aq′c

L + q̄′c
RγµT

aq′c
R

]
, (5.20)
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with the one for the pseudo-axial gluon

HA
eff =2πLαs

MKK

∑
q,q′

(2π
Lε

)2 ∫ 1

ε
dt

∫ 1

ε
dt′
[
c0 + t2< + c1(t2 + t′2) + c2 t

2t′2
]

×
[
− tanϑ (q̄LγµT

aqL + q̄RγµT
aqR) + cotϑ (q̄c

LγµT
aqc

L + q̄c
RγµT

aqc
R)
]

×
[
− tanϑ (q̄′

LγµT
aq′

L + q̄′
RγµT

aq′
R) + cotϑ (q̄′c

LγµT
aq′c

L + q̄′c
RγµT

aq′c
R)
]
,

(5.21)

where we made use of the general propagator in (3.25). This expression is valid
for arbitrary BCs except for the (NN) case, but which is already excluded since
we demand a priori that the new gauge boson is massive. The choice of possible
boundary conditions will be examined later in this section. Relevant for CRS

4 and CRS
5

are the integrands involving mixed left/right-chiral four-quark operators multiplied
by t2< in (5.20). Here, the dominant contributions come from the left-chiral doublet
paired with right-chiral singlet operators. Such combinations can be eliminated by
adding the corresponding pseudo-axigluon expressions in (5.21), since they come with
an opposite sign. This cancellation works independently of the boundary parameters
bε, b1 as well as the mixing angle ϑ. But, we have to ensure that the new contribution
from t2t′2 will not spoil this suppression mechanism.

Decomposing the quark fields in (5.21) and using the abbreviations for the overlap
integrals (4.52), (4.53), (4.54) and (4.55), we find after some steps the exact result

HA
eff = 2πLαs

M2
KK

T a ⊗ T a

sin2 ϑ cos2 ϑ

∑
q,q′={u,d}

∑
m,m′

∑
n,n′{

c0
[
q̄

(m)
L γµ(1 sin2 ϑ− δQ)mnq

(n)
L − q̄(m)

R γµ(1 cos2 ϑ− δq)mnq
(n)
R

]
×
[
q̄

′(m′)
L γµ(1 sin2 ϑ− δQ′)m′n′q

′(n′)
L − q̄′(m′)

R γµ(1 cos2 ϑ− δq′)m′n′q
′(n′)
R

]
+ c1

[
q̄

(m)
L γµ(∆Q sin2 ϑ− εQ)mnq

(n)
L − q̄(m)

R γµ(∆q cos2 ϑ− εq)mnq
(n)
R

]
×
[
q̄

′(m′)
L γµ(1 sin2 ϑ− δQ′)m′n′q

′(n′)
L − q̄′(m′)

R γµ(1 cos2 ϑ− δq′)m′n′q
′(n′)
R

]
+ c1

[
q̄

(m)
L γµ(1 sin2 ϑ− δQ)mnq

(n)
L − q̄(m)

R γµ(1 cos2 ϑ− δq)mnq
(n)
R

]
×
[
q̄

′(m′)
L γµ(∆Q′ sin2 ϑ− εQ′)m′n′q

′(n′)
L − q̄′(m′)

R γµ(∆q′ cos2 ϑ− εq′)m′n′q
′(n′)
R

]
+ c2

[
q̄

(m)
L γµ(∆Q sin2 ϑ− εQ)mnq

(n)
L − q̄(m)

R γµ(∆q cos2 ϑ− εq)mnq
(n)
R

]
×
[
q̄

′(m′)
L γµ(∆Q′ sin2 ϑ− εQ′)m′n′q

′(n′)
L − q̄′(m′)

R γµ(∆q′ cos2 ϑ− εq′)m′n′q
′(n′)
R

]
+
[
q̄

(m)
L γµ(∆̃Q sin2 ϑ− εQ)mnq

(n)
L − q̄(m)

R γµ(∆̃q cos2 ϑ− εq)mnq
(n)
R

]
⊗
[
q̄

′(m′)
L γµ(∆̃Q′ sin2 ϑ− εQ′)m′n′q

′(n′)
L − q̄′(m′)

R γµ(∆̃q′ cos2 ϑ− εq′)m′n′q
′(n′)
R

]}
,

(5.22)
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where q = u (d) implies Q = U (D) and analogously for q′, Q′. It is further under-
stood, that the color generators T a are inserted within each operator bilinear. Note
that the terms in the last two lines of (5.22) represent tensor integrals, that can be
expressed as double integrals via relations (4.48) - (4.51).

Wilson Coefficients

Formula (5.22) is the starting point from which we derive the contribution to the
Wilson coefficients in (4.47), stemming from the tree level diagram in fig. 5.1. We
set q = q′ = d, m = m′ = 1 and n = n′ = 2 and use (4.43) and (4.44) to transform
into the operator basis (4.23). Then we can read off the coefficients CRS

1,A, C̃RS
1,A, CRS

4,A
and CRS

5,A. Adding also the gluon contributions, the combined and exact coefficients
finally read

.

.

.d

.s

.A(n≥0)
µ

.s

.d

Figure 5.1.: Tree-level diagram, contributing to K0-K̄0 mixing, by exchanging all (massive)
4D modes of the pseudo-axial gluon.

CRS
1,G+A = 4πL

M2
KK

[
αs

2

(
1− 1

Nc

)]{ 1
c2

ϑ

(∆̃D)12 ⊗ (∆̃D)12 −
2
c2

ϑ

(∆̃D)12 ⊗ (ε̃D)12

+ 1
s2

ϑc
2
ϑ

(ε̃D)12 ⊗ (ε̃D)12 + c0
2s2

ϑc
2
ϑ

(δD)2
12 −

c1
c2

ϑ

[
(∆D)12 −

1
s2

ϑ

(εD)12

]
(δD)12

+ c2
2c2

ϑ

[
s2

ϑ(∆D)2
12 − 2(∆D)12(εD)12 + 1

s2
ϑ

(εD)2
12

]}
, (5.23)

C̃RS
1,G+A = 4πL

M2
KK

[
αs

2

(
1− 1

Nc

)]{ 1
s2

ϑ

(∆̃d)12 ⊗ (∆̃d)12 −
2
s2

ϑ

(∆̃d)12 ⊗ (ε̃d)12

+ 1
s2

ϑc
2
ϑ

(ε̃d)12 ⊗ (ε̃d)12 + c0
2s2

ϑc
2
ϑ

(δd)2
12 −

c1
s2

ϑ

[
(∆d)12 −

1
c2

ϑ

(εd)12

]
(δd)12

+ c2
2s2

ϑ

[
c2

ϑ(∆d)2
12 − 2(∆d)12(εd)12 + 1

c2
ϑ

(εd)2
12

]}
, (5.24)
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CRS
4,G+A = 4πL

M2
KK

[2αs]
{
− 1
c2

ϑ

(∆̃D)12 ⊗ (ε̃d)12 −
1
s2

ϑ

(∆̃d)12 ⊗ (ε̃D)12

+ 1
s2

ϑc
2
ϑ

(ε̃D)12 ⊗ (ε̃d)12 + c0
2s2

ϑc
2
ϑ

(δD)12(δd)12 −
c1
2

[ 1
c2

ϑ

(∆D)12(δd)12

+ 1
s2

ϑ

(∆d)12(δD)12 −
1

s2
ϑc

2
ϑ

{
(εD)12(δd)12 + (εd)12(δD)12

}]

+ c2
2

[
(∆D)12(∆d)12 −

1
c2

ϑ

(∆D)12(εd)12 −
1
s2

ϑ

(∆d)12(εD)12

]}
, (5.25)

CRS
5,G+A =− 1

Nc
CRS

4,G+A, (5.26)

with the abbreviations cϑ ≡ cosϑ and sϑ ≡ sinϑ. The single integrals and the tensor
structures are defined in (4.48) - (4.55). At leading order in v2/M2

KK, we can neglect
all terms involving an εD,d, ε̃D,d or δD,d quantity, see (4.58), yielding the simpler
expressions

CRS
1,G+A = 4πL

M2
KK

[
αs

2

(
1− 1

Nc

)] 1
cos2 ϑ

(∆̃D)12 ⊗ (∆̃D)12 +O(v2/M4
KK), (5.27)

C̃RS
1,G+A = 4πL

M2
KK

[
αs

2

(
1− 1

Nc

)] 1
sin2 ϑ

(∆̃d)12 ⊗ (∆̃d)12 +O(v2/M4
KK), (5.28)

CRS
4,G+A = 4πL

M2
KK

[2αs] c2
2

(∆D)12(∆d)12 +O(v2/M4
KK) = − 1

Nc
CRS

5,G+A . (5.29)

The tensor structures of CRS
1,G+A and C̃RS

1,G+A receive a ϑ-dependent enhancement,
compared to the previous coefficients in (4.47), e.g. by a factor of two for ϑ = 45◦.
On the other hand, they completely vanish in case of the dangerous coefficients
CRS

4,G+A and CRS
5,G+A. Instead, a new contribution from the t2t′2 term of the pseudo-

axial gluon propagator appears, that is independent of the angle ϑ but depends on
c2(bε, b1). Within the ZMA, we can see from (4.57) and (4.59), that the product
(∆D)12(∆d)12 is of the same size as the tensor product before,

(∆̃D)12 ⊗ (∆̃d)12 ∼ (∆D)12(∆d)12 . (5.30)

So, in order to solve the RS flavor problem, we have to suppress the coefficient c2,
which depends on the boundary parameters bε and b1, see (3.26), through

c2(bε, b1) = − bεb1
2(bε + b1ε)− bεb1(ε2 − 1)

. (5.31)

Still, these parameters can not be chosen freely, since they are related to the mass of
the pseudo axial gluon and they have to be generated by a realistic implementation of
the scalar sector. The latter point, the extension of the Higgs sector, will be covered
in chapter 6. For our purpose here, we just assume that the SU(3)D×SU(3)S group
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gets spontaneously broken down to the color gauge group SU(3)c at the UV and
IR brane, leading to two vacuum expectation values vUV and vIR. A natural size of
the UV VEV is the Planck scale, vUV ∼ MPl, while the IR VEV is warped down
to a value near the electroweak scale, vIR ∼ v. Their specific values depend on the
concrete scalar implementation, therefore we use a parametrization by ζε, ζ1 and set5

vUV = ζε
MKK
ε

, vIR = ζ1v . (5.32)

For realistic setups, these parameters are postive numbers of O(1). As we will show
in section 6.1, both expectation values are related to the boundary conditions of the
pseudo-axial gluon. In our case, with the parametrization in (5.32), this yields

bε = ζ2
ε

ε

Lg2
s

2Nc sin2 ϑ cos2 ϑ
, b1 = − ζ

2
1v

2

M2
KK

Lg2
s

2Nc sin2 ϑ cos2 ϑ
, (5.33)

with the mixing angle ϑ and the number of colors Nc ≡ 3. Based on this parametriza-
tion, we can calculate the physical masses mA

n for each 4D mode by imposing the
BCs on the homogeneous profile solution in (2.42), which leads to the exact equation[

bεJ1(xnε)− xnJ0(xnε)
][
xnY0(xn) + b1Y1(xn)

]
= −

[
b1J1(xn) + xnJ0(xn)

][
xnY0(xnε)− bεY1(xnε)

]
, (5.34)

whose eigenvalues xn = mA
n /MKK provide the masses. We are interested in the small-

est solution of (5.34), since mA
0 might be constrained by current exclusion bounds

from collider experiments. An alternative way for obtaining the mass eigenvalues
would be to use the 5D solution of the vector propagator in (3.10) and calculate
numerically the momentum zeros of its reciprocal.

Discussion of the Boundary Conditions

Now, we can start to examine different BC types. The (NN) case with bε = b1 = 0
would imply no breaking of SU(3)D × SU(3)S , leading to massless pseudo-axial
gluons, which is experimentally excluded. Remaining are therefore three distinct
scenarios:

(NM) bε = 0 & b1 6= 0 : This case appears to be a common choice, since the
other massive gauge bosons Z,W and A have boundary conditions of this type.
From (5.31), we also see that the t2t′2 contribution vanishes, since c2(0, b1) = 0.
For completeness, we quote the other coefficients,

c0(0, b1) = 1 + 2
b1

and c1(0, b1) = −1 . (5.35)

Concerning the zero-mode mass mA
0 , we can solve (5.34) numerically in depen-

dence of b1, which is depicted in the left figure of (5.2). The physical mass is
5Note, MPl ∼ MKK/ε.

77



CHAPTER 5. SOLVING THE RS FLAVOR PROBLEM

bounded from below by mA
0 = 0 for b1 = 0, which represents the (NN) case,

and also from above by mA
0 = 0.235MKK in the limit b1 → ∞. For low MKK

values of 1-2 TeV, such a pseudo-axial gluon would have been seen in the LHC
dijet measurements [62],[63].
Note, that we don’t need to consider negative values for b1, since they cor-
respond to an imaginary VEV in (5.32) and lead to tachyonic particles with
negative squared masses. This can be seen by directly calculating the eigen-
values of (5.34) or by looking at the 5D vector propagator in (3.25), when we
insert our coefficient values c0, c1 and c2. Focusing only on the sum of profiles,
we find

∞∑
n=0

χA
n (t)χA

n (t′)
(mA

n )2 = L

4πM2
KK

[
t2< − t2 − t′2 + 1 + 2

b1

]
. (5.36)

For specific values like t = t′ = 1, the right-hand side gets negative for b1 < 0.
The square of profiles on the left hand side is positive, so an imaginary mass
value has to account for the sign.
As a consequence, the (NM) type is experimentally excluded.

.
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Figure 5.2.: Plots of pseudo-axial gluon masses mA
0 , in dependence of the IR boundary pa-

rameter b1. Left is depicted the (NM) case with bε = 0 and on the right the
(MM) type with bε = 1/ε. In both cases, the horizontal dashed line represents
the asymptotic curve for b1 →∞.

(MN) bε 6= 0 & b1 = 0 : In this scenario, the sum over profiles strongly simpli-
fies to

∞∑
n=0

χA
n (t)χA

n (t′)
(mA

n )2 = L

4πM2
KK

[2ε
bε
− ε2 + t2<

]
, (5.37)
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since c1 and c2 vanish. When evaluating equation (5.34), we can have physical
masses forA(0)

µ , ranging from zero to 2.41MKK for bε ∈ [0,∞). A heavy pseudo-
axial gluon is possible by suitable values of the UV boundary parameter. Again,
negative values of bε are excluded, because they lead to tachyonic particles.
This can be seen from (5.37), by setting t = t′ = ε and comparing both sides
for bε < 0.
But, a serious problem of the (MN) boundary condition concerns its implemen-
tation by a scalar sector. The vanishing parameter b1 = 0 implies the absence
of a scalar field, charged under the SU(3)D × SU(3)S , that gets broken at the
IR brane. Without such a scalar field, we can’t write down Yukawa terms at
the infrared brane, since the quark fields q and qc transform as triplets under
the SU(3)D and SU(3)S respectively, see (5.6). As a consequence we have to
discard the (MN) case, too.

(MM) bε 6= 0 & b1 6= 0 : For a better handling of c0, c1 and c2, we expand them
around ε and use that bε ∝ 1/ε in (5.33), yielding

c0 = 0 +O(ε2), c1 = 0 +O(ε2) and c2 = − b1
2 + b1

+O(ε2) . (5.38)

The coefficients are independent of bε as long as its value is not of order ε,
which would be unnatural due to vUV ∼ O(MPl). With (5.38), the tower of
profiles takes the form

∞∑
n=0

χA
n (t)χA

n (t′)
(mA

n )2 = L

4πM2
KK

[
t2< −

b1
2 + b1

t2t′2 +O(ε2)
]
. (5.39)

The additional ∆F = 2 contribution from the t2t′2 depends on the specific
value of b1 in (5.33), that relies itself on the scalar sector at the IR through
ζ1. Exemplary, for MKK = 1.5 TeV and ϑ = 45◦, the relation is given by
b1 = 0.06 ζ2

1 . Small values for b1 can suppress sufficiently the c2 coefficient in
(5.38).
Concerning the mass plot of A(0) on the right side of figure (5.2), we have set
the UV BC to bε = 1/ε. Still the result is largely independent of bε as long
as it is not of O(ε). The curve starts with mA

0 = 2.405MKK for b1 = 0 and
approaches mA

0 = 3.832MKK in the limit b1 →∞.
As shown above, we are interested in values b1 smaller than one. For this
purpose, we can expand the eigenvalue equation (5.34) in ε and find at leading
order x0J0(x0) = −b1J1(x0). Further expanding this equation around the first
zero of J0, we can solve the leading order term for the pseudo-axial gluon mass
and find

mA
0 ≈

(
2.405 + b1

2.405

)
MKK, (5.40)

which is accurate to two decimal places for b1 < 0.3. Axial gluons in this mass
range are not excluded by collider experiments.

79



CHAPTER 5. SOLVING THE RS FLAVOR PROBLEM

Interim Conclusion

In summary, a pseudo-axial gluon with (MM) boundary conditions can solve the RS
flavor problem by suppressing the additional t2t′2 contribution via a small value for
the IR boundary parameter b1 ∼ ζ2

1v
2/M2

KK. A concrete value for ζ1 relies on the
scalar extension, which is the topic of chapter 6. Still we can vary this parameter in
a sensible range ζ1 ∈ [0.1, 10] and calculate the impact on the εK observable. It also
affects the mass mA

0 via (5.40), which can be compared to the masses of the first
KK gluon or photon mode mG,A

1 = 2.448MKK. For values b1 smaller than 0.1, the
lightest particle that is predicted in our extended RS model will be the zero-mode
of the pseudo-axial gluon.

In the following section, we will perform the numerical calculation of εK in the
Minimal RS Model and in our extended version of it.

5.2. Numerical Analysis

5.2.1. Parameter Sets

In comparison with the SM, the RS setup contains the additional parameters L,
MKK, M cQ , M cu and M cd

. While the volume is fixed in our scenario6 to L = − ln ε
with ε = 10−16, see (2.20), we randomize the MKK scale in the range [1, 10] TeV
using a flat distribution. As mentioned in section 2.2.3, we can choose the bulk mass
matrices diagonal and real, leading to the nine c-parameters cQi,ui,di

. We can fix eight
of them. Therefore, we uniformly randomize the bulk parameter cu3 ∈ [−0.5, 2] and
the 36 real and imaginary entries of the Yukawa matrices Y u and Y d within the range
[0, 3]. These generated values, together with the experimental values for the quark
masses and for the Wolfenstein parameters A and λ from table B.1, can be inserted
into (2.82) to calculate the eight remaining F -profiles and to fix the c-parameters.
We obtain a parameter set (or point)

X̄ = (MKK,Y u,Y d, cQ, cu, cd), (5.41)

which is then used to calculate the quark masses and Wolfenstein parameters via
(2.80) and (2.81). The results are summarized by the list

Ȳ ≡ (mu,mc,mt,md,ms,mb, A, λ, ρ̄, η̄) . (5.42)

As a selection criteria, we calculate the quantity

χ2[X̄] =
10∑

n=1

(
Yn − Yexp,n

σn(Ȳexp)

)2

, (5.43)

where Ȳexp and σ(Ȳexp) represent analogous lists composed of the experimental val-
ues and errors (see table B.1). The point X̄ is kept when χ2[X̄] < 10, otherwise

6A different scenario would be the LRS model with a reduced value for L, see [29] for discussions.
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it is rejected. A more detailed description of the algorithm for generating physical
parameter sets can be found in [29].

For the upcoming analysis, we use a subset of 10000 points, which have been gen-
erated by Sandro Casagrande [45]. Each of these points X̄i (i ∈ [1, 10000]) is physical
in the sense that it fulfills the criterion χ2[X̄i] < 10.

Let us look at the c-parameters of our data set. While cu3 is randomized in the
range [−0.5, 2], the remaining bulk mass parameters are calculated via (2.82), as
mentioned above. Their frequency within the data points is qualitatively illustrated
in the three diagrams at the end of this section in fig. 5.3, where the c-parameters
are binned in 0.01 steps and the number of parameter points, which contain c-values
within the corresponding bin, is plotted on the y-axis. Up to cu3, the distributions
are distinctively peaked. For example, the maximum of the cd1 distribution is located
at −0.64 with a full width at half maximum (FWHM) value of circa 0.07.

In general, we can infer from the distributions, that the solution of the Yukawa
Hierarchy Problem relies on the restricted range of the c-parameters, in order to
reproduce physical parameter sets. Thus, the issue of Yukawa couplings varying
over several orders of magnitude in the SM gets replaced by the demand to precisely
adjust the O(1) c-parameters in the RS model.

.
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Figure 5.3.: Distributions of the bulk mass parameters in our data set consisting of 10000
points. See the text for more details.
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5.2.2. RG Evolution and Hadronic Matrix Elements

We are interested in the effective Hamiltonian matrix element with one incoming K̄0

and one outgoing K0, which can be decomposed as (see (4.22))

〈K0|Heff|K̄0〉 =
5∑

i=1
Ci(µ)〈Qi(µ)〉+

3∑
i=1

C̃i(µ)〈Q̃i(µ)〉 . (5.44)

We evaluate the coefficients at MKK for each parameter point and then evolve them
down to the low scale µ = 2 GeV, where the hadronic matrix elements are known.
One has to calculate anomalous dimensions, coming from effective diagrams with
gluon lines connecting two external quarks. This has been done at NLO in [52],
including also two loop diagrams, and is then implemented in [51] to provide an
evolution formula. Adopted to our case, the formula reads

Cr(2 GeV) =
∑

i

∑
s

(
b

(r,s)
i + η c

(r,s)
i

)
ηai Cs(MKK), (5.45)

with

η = αs(MKK)
αs(mt)

. (5.46)

The parameters b(r,s)
i , c(r,s)

i and ai are referred to as "magic numbers" and can be
found in the appendix B.2. As can be seen from (5.45), the coefficients in general
mix with each other. In our case, we encounter a mixing of C2 with C3 and C4
with C5. This is due to the diagrams in fig. 4.1, when the relation for the generator
product TαβTγδ in (4.43) is used. Note that formula (5.45) does also hold for the
coefficients C̃1 - C̃3.

Now we can numerically calculate all coefficients at µ = 2 GeV. What remains are
the operator matrix elements, which can not be calculated perturbatively. They can
be defined via

〈K0|O1|K̄0〉 = 1
3
MKf

2
KB1(µ), 〈K0|O2|K̄0〉 = − 5

24
M̃2B2(µ),

〈K0|O3|K̄0〉 = 1
24
M̃2B3(µ), 〈K0|O4|K̄0〉 = 1

4
M̃2B4(µ),

〈K0|O5|K̄0〉 = 1
12
M̃2B5(µ), with M̃ ≡

(
MK

ms(µ) +md(µ)

)
, (5.47)

where the Bi(µ) are so called bag parameters, which are calculated on the lattice

B1(µ) = (0.527± 0.022) [64], B2(µ) = (0.7± 0.2) [65], B3(µ) = (1.0± 0.4) [65],
B4(µ) = (0.9± 0.2) [65], B5(µ) = (0.6± 0.1) [65] . (5.48)

Concerning the kaon decay constant fK and the masses appearing in (5.47), we use
the following values

fK = (156.1± 0.12) MeV [11], md(µ) +ms(µ) = (135± 18) MeV [65],
MK = (497.614± 0.024) MeV [11] . (5.49)
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For illustration, we can combine the running and the hadronic matrix elements to
express the effective Hamiltonian in terms of the Wilson coefficients evaluated at a
fixed scale of MKK = 1.5 TeV, yielding

〈K0|Heff|K̄0〉 = 0.0016
[
C1 + C̃1 + 117

(
C4 + 1

3.1
C5

)]
. (5.50)

We encounter the previously in (4.65) mentioned enhancement of C4 and C5 relative
to C1 and C̃1, which gets even stronger when we increase the MKK value.

5.2.3. Results

For each parameter point, we calculate the εK value via

εRS
K = εSM

K + ∆εRS
K , (5.51)

where εSM
K is the theoretical SM value in (4.37), including the GF correction in (4.40).

In the Minimal RS model we obtain the scatter plot in fig. 5.4, where the εRS
K values

for 10000 points are plotted against the MKK values. The subset of points, that are
colored in black do fulfill the following bound

|εexp
K | − 10−3 < |εRS

K | < |ε
exp
K |+ 10−3, (5.52)

with the experimental value |εexp
K | = 2.229 10−3 in (4.38). We choose a bound width

of ±10−3 due to the hadronic uncertainties in (5.48). The red line represents the
median curve and and reflects the 1/M2

KK behavior of the Wilson coefficients in ∆εRS
K .

Crossing the above boundary region only in between 8-9 TeV indicates that high
values for MKK are generically favored in the Minimal RS model. This introduces
the flavor problem.

When we add the pseudo-axial gluon contributions to ∆εRS
K , we have to specify the

mixing angle ϑ and the UV and IR boundary conditions through ζε and ζ1 in (5.33).
Their specific values depend on the implementation of the scalar sector. But in case
of the UV BC, it turns out that the results are largely independent as long as ζε is
not of order ε. Therefore we fix its value to ζε = 1/ε in our numerical evaluations.
Setting ζ1 = 1 and ϑ = 45◦, we obtain the scatter plot in fig. 5.5, which shows a clear
shifting of the red median curve to lower MKK values compared to fig. 5.4 without
the pseudo-axial gluon contributions. Here, the crossing point is reduced to 2.3 TeV.

To be more quantitative, we plot the percentages of points fulfilling the εK bound
for one TeV-wide bins. They can be seen in the histogram 5.6, where blue colored
bins refer to the Minimal RS model and the orange ones to our extended version.
In the low range of 1-2 TeV, the percentage terms raise from 3% to 12% and for 2-3
TeV from 7% to 30%.

Up to now we have considered the results for ζ1 = 1 and ϑ = 45◦. Keeping the
mixing angle fixed, fig. 5.7 shows the effect of varying ζ1 in the range [0.1, 10].
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Figure 5.4.: Depicted are 10000 εRS
K values within the Minimal RS model. Points, which lie

inside the range of (5.52), are colored in black otherwise in gray. The median
curve for all points is the red line.
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Figure 5.5.: This is the analogous scatter plot to fig. 5.4, including the pseudo-axial contri-
butions for ζε = 1/ε, ζ1 = 1 and a fixed mixing angle ϑ = 45◦.
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Figure 5.6.: Each bin height represents the percentage of points, that lie within the εK range
(5.52). Blue bins correspond to the Minimal RS model, while the orange bins
include the pseudo-axial contributions. Parameter values are fixed to ζε = 1/ε,
ζ1 = 1 and ϑ = 45◦.

Plotted are the percentage numbers for the two lowest bins. For low values ζ1 < 1,
the additional contribution from the t2t′2-term in the propagator (5.39) is negligible,
leading to a plateau and a maximum value of ∼ 12% for the 1-2 TeV bin. On the
other hand, increasing ζ1 > 1 lowers the percentages significantly.

Concerning the mixing angle, we find for deviations from ϑ = 45◦ by ±20◦ that
our results are not strongly affected. For more extreme values near 0◦ and 90◦, the
factors 1/ sin2 ϑ and 1/ cos2 ϑ in (5.23) - (5.26) blow up and therefore enhance the
εK values.

Interim Summary

Extending the RS model by a pseudo-axial gluon reduces the εRS
K values for the

10000 parameter points. Of interest is especially the low MKK region of 1-2 TeV,
where we find in our numerical calculations (ζ1 = 1), that 12 points out of 100 are
compatible with the εK bound, instead of 3 points previously. For the next higher
bin the fractions are 30% instead of 7%. Due to this rise, we speak of a mitigation
concerning the fine-tuning problem for εK in the Minimal RS model.

Still, our results are in some sense preliminary, since we have not worked out the
scalar sector. The subsequent chapter deals with this topic.
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CHAPTER 5. SOLVING THE RS FLAVOR PROBLEM
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Figure 5.7.: Black (blue) points show the percentages in our extended model for the bin 1-2
TeV (2-3 Tev), when varying ζ1 while ζε = 1/ε, ϑ = 45◦ are fixed. Apart from
statistical fluctuations, the points fulfilling the εK bound for ζ1 values larger
than one decrease significantly.

86



6. Extension of the Higgs Sector

In literature, axial gluons have already been considered in the Standard Model, in-
cluding discussions of the extended scalar sector, for instance in [66]. Until this stage,
such an extension has not been worked out within the Randall-Sundrum framework
so far. In the following, we are going to give a first treatment of the enlarged Higgs
sector, containing the main properties in order to justify the numerical analysis of
the previous chapter.

Motivation

The solution to the RS flavor problem relies on the (MM) boundary conditions for
the pseudo-axial gluon A. To generate the BCs, we need additional scalar fields
localized at the UV and IR brane, that are charged under the symmetry group

Gc ≡ SU(3)D × SU(3)S =
{(
UD, US

) ∣∣UD ∈ SU(3)D, U
S ∈ SU(3)S

}
, (6.1)

which will be gauged. The aim is then to find a realistic and minimal extension of
the Higgs sector in the RS model, that spontaneously breaks the complete gauge
group to the unbroken color SU(3)c and electromagnetic U(1)Qe ,

G ≡ SU(3)D × SU(3)S × SU(2)L × U(1)Y
SSB−−−→ SU(3)c × U(1)Qe . (6.2)

We begin with the transformation behavior of the 5D quark fields under our extended
gauge group G. They are listed in tab. 6.1 with the generation index n = 1, 2, 3

5D Quark Fields SU(3)D SU(3)S SU(2)L I3 U(1)Y

(Qn)i
α = (un, dn)i

α 3 1 2 (1/2,−1/2) 1/6

(uc,n)ᾱ 1 3 1 0 2/3

(dc,n)ᾱ 1 3 1 0 −1/3

Gauge Fields (GD)a
M (GS)a

M W k
M BM

Table 6.1.: Quantum numbers of the 5D quark fields in our extended model.

and the weak isospin label i = 1, 2. To distinguish between both SU(3)’s, we choose
Greek letters like α = 1, 2, 3 for the SU(3)D triplet and letters with a bar like
ᾱ = 1, 2, 3 in case of an SU(3)S triplet. Both additional symmetry groups SU(3)D

and SU(3)S are gauged by the fields (GD)a
M and (GS)a

M with a = 1, 2, ..., 8.
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CHAPTER 6. EXTENSION OF THE HIGGS SECTOR

Scalar Field Content

We see, that quark weak doublets and singlets transform in fundamental represen-
tations of SU(3)D and SU(3)S , while the Higgs field Φ is not charged under these
groups. As a consequence the Yukawa terms of the Minimal RS model in (2.52) are
not gauge invariant any more. To solve this issue, we need at least two additional
scalar fields Φ(1) and Φ(2) located at the IR brane, one for the up-sector and one for
the down-sector, that transform as triplets under SU(3)D and as anti-triplets under
SU(3)S respectively. Their transformation behavior is listed in tab. 6.2, where 3∗

Scalar Fields SU(3)D SU(3)S SU(2)L U(1)Y localization

Φ̂i 1 1 2 1/2 IR brane

Φ(1)i
αᾱ 3 3∗ 2 −1/2 IR brane

Φ(2)i
αᾱ 3 3∗ 2 1/2 IR brane

Φ(0)
αᾱ 3 3∗ 1 0 UV brane

Table 6.2.: Scalar fields in our extended model.

denotes the complex conjugate fundamental representation of SU(3). To clarify the
notation introduced above, the scalar field Φ(1) (analog for Φ(2)) transforms under
Gc as

Φ(1)i
αᾱ

SU(3)D×SU(3)S−−−−−−−−−−−→ Φ′(1)i
αᾱ = UD

αβ U
S∗
ᾱβ̄

Φ(1)i
ββ̄

= (UD Φ(1)i US†)αᾱ, (6.3)

with special unitary 3 × 3 matrices UD ∈ SU(3)D and US ∈ SU(3)S . Now we can
write down the Yukawa terms for our extended model, that have to be singlets under
G. The possible gauge invariant terms are contained in the Lagrangian

LFS,Y = −
√
|G| δ(x5 − rπ)

[
Y

(5)
d Q̄i

αΦ(2)i
αᾱ d

c
ᾱ + Y (5)

u Q̄i
αΦ(1)i

αᾱ u
c
ᾱ + h.c.

]
, (6.4)

where we have suppressed the generation index for clarity. Note there is no Yukawa
term for the Φ(0) field, since it is a singlet under SU(2)L.

So far, we have motivated the need for Φ(1) and Φ(2). Later in section 6.2 it turns
out, that we need a SM-like Higgs field Φ̂ in order to prevent physical Goldstone
bosons in our theory. Furthermore, a bi-triplet field Φ(0) has to be introduced in
the UV to generate the mixed boundary condition of the pseudo-axial gluon at this
brane. The complete scalar content is listed in table 6.2.

Scalar Action

All four fields Φ̂, Φ(0), Φ(1) and Φ(2) build up the scalar sector of our extended model.
Their action can be written as

S
(5)
HS =

∫
d4x

∫ πr

−πr
dx5 (LΦ,UV + LΦ,IR) (6.5)
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with Lagrangians for the fields localized at the UV and at the IR brane,

LΦ,UV = δ(|φ|)
{

Tr
[(
DµΦ(0))†(DµΦ(0))]− VUV

(
Φ(0))}, (6.6)

LΦ,IR = δ(|φ| − π)
{(
DµΦ̂

)†(
DµΦ̂

)
+ Tr

[(
DµΦ(1))i†(DµΦ(1))i]

+ Tr
[(
DµΦ(2))i†(DµΦ(2))i]− VIR

(
Φ̂,Φ(1),Φ(2))} . (6.7)

Note that the δ-function in (6.6) is defined, similarly to the one in (2.30), by

δ(|φ|) ≡ lim
θ→0+

1
2

[δ(φ+ θ) + δ(φ− θ)] , (6.8)

which shifts discontinuities at φ = 0 into the bulk. Furthermore, we made use of the
trace notation to simplify the kinetic terms for the colored fields, since[(
DµΦ(1))i

αᾱ

]∗(
DµΦ(1))i

αᾱ
=
[(
DµΦ(1))i†]

ᾱα

(
DµΦ(1))i

αᾱ
= Tr

[(
DµΦ(1))i†(DµΦ(1))i],

(6.9)

and analog for Φ(2) and Φ(0). The potential terms are included in VUV and VIR, we
will deal with them in section 6.2. In relation to the transformation behavior in tab.
6.2, the covariant derivatives for the new scalar fields are given by

(DµΦ(0))αᾱ =
(
δαβδᾱβ̄∂µ − igD5δᾱβ̄T

a
αβ(GD)a

µ + igS5δαβ(T a
ᾱβ̄

)∗(GS)a
µ

)
Φ(0)

ββ̄
, (6.10)

(DµΦ(1))i
αᾱ =

(
δαβδᾱβ̄δij∂µ − igD5δᾱβ̄δijT

a
αβ(GD)a

µ + igS5δαβδij(T a
ᾱβ̄

)∗(GS)a
µ

− ig5δαβδᾱβ̄W
k
µ τ

k
ij − ig′

5δαβδᾱβ̄YuBµ

)
Φ(1)j

ββ̄
, (6.11)

with Yu = −1/2. Concerning Φ(2), replace u with d in (6.11) and insert Yd = 1/2.
Note the positive sign and the complex conjugate generator

(
T a
)∗ within the GS-

terms in (6.10) and (6.11), which is due to the conjugate representation 3∗ under
SU(3)S . Regarding Φ̂, the covariant derivative is the same as for the Higgs field,

DµΦ̂ = (∂µ − ig5W
k
µ τ

k − ig′
5

2
Bµ)Φ̂, (6.12)

since they have identical quantum numbers.

Spontaneous Symmetry Breaking (SSB)

Next, we assume that the potentials VUV, VIR induce a breaking of G to the SM
gauge group in (6.2). This implies a breakdown of SU(3)D ×SU(3)S to its diagonal
subgroup

Hc ≡
{

(U,U)
∣∣∣U ≡ UD = US , UD ∈ SU(3)D, U

S ∈ SU(3)S

}
, (6.13)
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CHAPTER 6. EXTENSION OF THE HIGGS SECTOR

which is isomorphic to SU(3) and can be identified with the color group SU(3)c.
Comparing the transformation behavior with (6.3), the three colored scalars trans-
form after SSB like

Φ(0)
αᾱ

Hc−−→ Φ′(0)
αᾱ = Uαβ U

∗
ᾱβ̄

Φ(0)
ββ̄

= (U Φ(0) U †)αᾱ, (6.14)

Φ(x)i
αᾱ

Hc−−→ Φ′(x)i
αᾱ = Uαβ U

∗
ᾱβ̄

Φ(x)i
ββ̄

= (U Φ(x)i U †)αᾱ for x = 1, 2, (6.15)

which states that Φ(0), Φ(x)i live in the 3 ⊗ 3∗ representation of SU(3)c. From group
theory, we know that this tensor product representation can be decomposed into the
direct sum of two irreducible ones,

3 ⊗ 3∗ = 1 ⊕ 8, (6.16)

which are denoted as the singlet 1 and octet 8 representations. To see this explicitly,
we introduce a convenient parametrization1

Φ(0)
αᾱ = φA

(0)T
A
αᾱ = φ0

(0)T
0
αᾱ + φa

(0)T
a
αᾱ,

Φ(x)i
αᾱ = φi,A

(x)T
A
αᾱ = φi,0

(x)T
0
αᾱ + φi,a

(x)T
a
αᾱ for x = 1, 2, (6.17)

where the range for capital letters A = 0, 1, ..., 8 is supplemented by the zero with
respect to a = 1, 2, ..., 8. Each field Φ(0), Φ(x)i can be decomposed into a set of
complex scalar fields

{
φA

(0)

}
,
{
φi,A

(x)

}
and basis elements, defined via

TA ≡

 1/2 , A = 0

λA/2 , A ∈ {1, 2, ..., 8}
, (6.18)

with the 3 × 3 unit matrix 1 and the Gell-Mann matrices λ1, λ2, ..., λ8. Now, when
we consider an infinitesimal SU(3)c transformation

U = eiδaT a = 1 + iδaT a +O(δ̄2), (6.19)

with δa � 1 and use the parametrization (6.17), the fields Φ(x)i (likewise for Φ(0))
transform as

Φ′(x)i = φ′i,0
(x) T

0 + φ′i,a
(x) T

a

= (1 + iδbT b +O(δ̄2))
[
φi,0

(x) T
0 + φi,a

(x) T
a
]

(1 + iδcT c +O(δ̄2))†

= φi,0
(x) T

0 +
[
φi,a

(x) + i(ifabc) δb φi,c
(x)

]
T a +O(δ̄2) . (6.20)

Comparing the last line with the first one, we can identify the symmetry invariant
field φi,0

(x) with the singlet and the multiplet
{
φi,a

(x)

∣∣∣a = 1, 2, ..., 8
}

with the octet, which
transforms in the adjoint representation

φi,a
(x)

Hc−−→ φ′i,a
(x) =

[
eiδbT b

adj
]

ac
φi,c

(x) with (T b
adj)ac ≡ ifabc, (6.21)

1This parametrization can be inverted by φi,A
(x) = 1

CA
Tr[Φ(x)iT A] (analog for φA

(0)), where C0 = 3/4
and C1, ..., C8 = 1/2.

90



where δb need not be restricted here to small values. The point is, that we obtain
after spontaneous symmetry breaking SU(3)c singlet and octet fields in our theory.

VEVs

As mentioned earlier, the SSB has to be generated by the potentials VUV and VIR,
that will be discussed in section 6.2. However at this stage, we assume that the
potentials allow for a non-zero minimum at the following vacuum expectation values
for the scalar fields〈

Φ(0)
αᾱ

〉
= v0√

2Nc
δαᾱ,

〈
Φ̂i〉 = v̂√

2
δi2,〈

Φ(1)i
αᾱ

〉
= v1√

2Nc
δi1δαᾱ,

〈
Φ(2)i

αᾱ

〉
= v2√

2Nc
δi2δαᾱ . (6.22)

We chose the prefactors such, that we obtain convenient mass terms for the W± and
Z bosons in the subsequent section. Then, the next step is to expand the scalar
fields around their VEVs in (6.22) and to decompose them into color singlets and
octets. We choose the following parametrization

Φ̂ = 1√
2

 √
2 Ŝ+

v̂ + Ŝ0
R + iŜ0

I

 , (6.23)

Φ(0)
αᾱ =

(
v0 + S0

(0)R + iS0
(0)I

) δαᾱ√
2Nc

+
(
O0,a

(0)R + iO0,a
(0)I

)
T a

αᾱ, (6.24)

Φ(1)
αᾱ =

v1 + S0
(1)R + iS0

(1)I√
2S−

(1)

 δαᾱ√
2Nc

+

O0,a
(1)R + iO0,a

(1)I√
2O−,a

(1)

T a
αᾱ, (6.25)

Φ(2)
αᾱ =

 √
2S+

(2)

v2 + S0
(2)R + iS0

(2)I

 δαᾱ√
2Nc

+

 √
2O+,a

(2)

O0,a
(2)R + iO0,a

(2)I

T a
αᾱ, (6.26)

where the vector notation refers to the isospin space. We denote color singlets with
S and octets with O, where the first superscript gives the sign of the electric charge
Qe = I3 + Y or is zero in case of neutral fields. The charged fields are complex
scalars, while we directly decomposed the neutral fields into real and imaginary
parts indicated by the subscripts R and I respectively. Factors of

√
2 or

√
2Nc in

front of the fields are chosen such, that the kinetic terms for the singlets and octets
are canonically normalized,(

∂µΦ̂
)†(
∂µΦ̂

)
= 1

2

[(
Ŝ0

R

)2 +
(
Ŝ0

I

)2]+ Ŝ+Ŝ−,

Tr
[(
∂µΦ(0))†(∂µΦ(0))] = 1

2

[(
S0

(0)R
)2 +

(
S0

(0)I
)2 +

(
O0,a

(0)R
)2 +

(
O0,a

(0)I
)2]

,

Tr
[(
∂µΦ(x))i†(∂µΦ(x))i] = 1

2

[(
S0

(x)R
)2 +

(
S0

(x)I
)2 +

(
O0,a

(x)R
)2 +

(
O0,a

(x)I
)2]

+ S+
(x)S

−
(x) +O+,a

(x) O
−,a
(x) , (6.27)
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CHAPTER 6. EXTENSION OF THE HIGGS SECTOR

for x = 1, 2 and where Ŝ− ≡ (Ŝ+)†, S− ≡ (S+)†, O−,a
(x) ≡ (O+,a

(x) )†.

Summarizing the field content, our scalar sector encompasses one charged and two
neutral singlets (4 real DOF) at the UV brane, while we have six neutral and two
charged singlets as well as octets (90 real DOF) at the IR brane.

Nambu-Goldstone Bosons

We need to clarify how many massless scalar particles we expect in our theory.
Therefore, we use some general results, which link the number of broken generators
to the number of massless scalar fields [5].

Starting with the Lagrangian at the UV Brane LΦ,UV in (6.6), we note that Φ(0)

transforms non-trivially only under Gc, which has 16 generators. Let us consider an
infinitesimal symmetry transformation

Φ(0)
αᾱ

Gc−−→ Φ′(0)a
αᾱ = Φ(0)

αᾱ + iεaDT
a
αβΦ(0)

βᾱ − iε
a
ST

a∗
ᾱβ̄

Φ(0)
αβ̄
, with εaD, ε

a
S � 1, (6.28)

which can be inferred from (6.3) to leading order in εaD, εaS when setting UD
αβ =

1 + iεaDT
a
αβ and US

ᾱβ̄
= 1 + iεaST

a
ᾱβ̄

. Inserting
〈
Φ(0)

βᾱ

〉
into (6.28), the VEV is left

invariant whenever the following term vanishes

εaDT
a
αβ

〈
Φ(0)

βᾱ

〉
− εaST a∗

ᾱβ̄
〈Φ(0)

αβ̄
〉 = v0√

2Nc
T a

αᾱ(εaD − εaS), for α, ᾱ = 1, 2, 3 . (6.29)

Taking εD = εS , this is obviously fulfilled and just states that the theory is still
invariant under the diagonal subgroup SU(3)c after SSB. When εaD 6= εaS for some
a ∈ {1, 2, ..., 8}, (6.29) does not vanish. There are eight broken generators, that
give rise to eight massless scalar fields, when we calculate the mass matrix of the
potential VUV. Since Gc is a gauge symmetry, their degrees of freedom are related to
the longitudinal components of the pseudo-axial gluon. This can be seen from the
matching calculation in section 6.1.

At the IR brane, we have to consider the fields Φ(1), Φ(2) and Φ̂ which transform
under the full gauge group G, that has 16 symmetry generators from Gc and four
from SU(2)L × U(1)Y . After SSB, the remaining symmetry SU(3)c × U(1)Qe has 9
generators, therefore we expect 11 massless scalar fields. Eight of them contribute
to the longitudinal degrees of freedom of the pseudo-axial gluon2, while three scalars
are absorbed by the zero-modes of the W± and Z bosons.

2In fact, this point is subtle. Due to the breaking at the UV and IR brane, we have a total amount
of 16 DOF, where eight of them must be absorbed by the zero-mode of the pseudo-axial gluon.
Concerning the remaining eight degrees of freedom, we expect that they lead to a (physical)
zero-mode of the scalar component Aa

5 .

92



There is another important aspect, concerning the symmetry of the potentials. It
may be possible, that a potential admits a larger global symmetry than the gauge
symmetry of the fields. In that case, we obtain for each additional generator of the
larger group a massless scalar field.

Estimating the Scalar Contributions for K0-K̄0 Mixing

At this stage, it is necessary to check that the newly introduced singlet and octet
fields will not give significant contributions to εK , thus keeping the analysis of the
previous chapter valid. To estimate their size, we insert the decomposition of Φ(2)

into the Yukawa terms in (6.4) and extract the relevant interactions involving vertices
that couple singlets and octets to down-type quarks. The corresponding 5D action
reads

S
(5)
FS,Y 3 −

∫
d4x

∫ πr

−πr
dx5 e

−3σ(φ) δ(x5 − rπ) 2
k

×
[ 1√

2Nc

(
S0

(2)R + iS0
(2)I
)
d̄αY dd

c
α +

(
O0,a

(2)R + iO0,a
(2)I
)
d̄αT

a
αᾱY dd

c
ᾱ + h.c.

]
,

(6.30)

where we replaced the 5D by the 4D Yukawa matrices via Y
(5)
d = Y d 2/k. Due to

the δ-function in (6.30), we can directly perform the integration along x5 meaning
to evaluate the quark profiles at φ = −π+, π−. In the same manner as for the
Higgs particle in the Minimal RS model, one can reformulate the profiles at the IR
boundary by making use of orhonormality relations for the quarks. Following the
steps performed in [28], [27] and adapting their results to our case, we can rewrite
(6.30) as3

S
(5)
FS,Y 3 −

∫
d4x

∑
m,n

[
md

m

v
δmn −

md
m

v
(δd)mn −

md
m

v
(δD)mn − (∆g̃d

h)mn

]

×
[ 1√

Nc

(
S0

(2)R + iS0
(2)I
)
d̄

(m)
L d

(n)
R +

√
2
(
O0,a

(2)R + iO0,a
(2)I
)
d̄

(m)
L T ad

(n)
R + h.c.

]
,

(6.31)
where

(∆g̃d
h)mn ≡ −

√
2π
Lε

a(d)†
m S(d)

m (π−)Y †
dS(D)

n (π−)a(D)
n . (6.32)

Based on the first bracket in (6.31), we see that flavor-changing transitions can only
be induced by the quantities δd,D and ∆g̃d

h, whose size is of O(v2/M2
KK). When we

calculate a diagram exchanging one of the scalar fields and perform the low energy
limit, the Wilson coefficient can be estimated to be of order v4/(m2

SM
4
KK), where mS

denotes the scalar mass coming from the internal propagator. Hence, we expect the
scalar contributions to be numerically insignificant, when compared with the strong
and electroweak ones.

3Note that the result ignores the rescaling of the Yukawa matrices in (2.62). Still, this approxima-
tion is sufficient for our purpose here.
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Constraints for v1 and v2

Returning to the Yukawa terms (6.4) in our extended model, we can insert the VEVs
for Φ(1), Φ(2) and obtain

LFS,Y 3 −
√
|G| δ(x5 − rπ)

[
v2√
2Nc

d̄Y
(5)
d dc + v1√

2Nc
ūY (5)

u uc + h.c.
]
, (6.33)

showing that v1 sets the mass scale for the up- and v2 for the down-type quarks. We
can achieve agreement with the Minimal model, see (2.52), by imposing

v1 = v2 =
√
Nc v ≈ 426 GeV . (6.34)

But this turns out to be in conflict with the demand to reproduce the correct W±

and Z masses, as will be shown in the next section 6.1, where v1 and v2 must at
least fulfill the following inequality

v2
1 + v2

2 ≤ v2 . (6.35)

While we can not circumvent this condition (6.35), the quark masses are not deter-
mined singly by the Yukawa terms in (6.33), but also by the bulk parameters. In
our model, their ZMA expressions are given by (compare with (2.80))

mui ≈
v1Y?√
2Nc

∣∣F (cQi)F (cui)
∣∣, mdi

≈ v2Y?√
2Nc

∣∣F (cQi)F (cdi
)
∣∣, (6.36)

where we have abbreviated the Yukawa entries with Y? for simplification. So, instead
of imposing condition (6.34), we can also obtain the correct quark masses by properly
redefining the zero-mode wavefunctions,

F (cui)→
√
Nc

v

v1
F (cui) ≡ F (c̃ui), F (cdi

)→
√
Nc

v

v2
F (cdi

) ≡ F (c̃di
), (6.37)

which results in a shift of the (singlet) c-parameters, denoted by c̃ui,di
, towards larger

values. Hence, the quark profiles get pushed in direction towards the IR brane. But,
this may mitigate the RS GIM suppression and therefore would affect our numerical
analysis in section 5.2. However, to see how strong the impact on εK really is,
one has to repeat the analysis with new parameter sets, containing the shifted bulk
parameters c̃ui and c̃di

.

6.1. Gauge Boson Masses
To calculate the mass terms for the gauge bosons, we need to consider the kinetic
terms of the scalar fields, that have a nontrivial transformation behavior under Gc,
yielding

S
(5)
HS 3

∫
d4x

∫ rπ

−rπ
dx5

{
δ(|x5|)Tr

[(
DµΦ(0))†(DµΦ(0))]

+ δ(|x5| − πr)
∑

x=1,2
Tr
[(
DµΦ(x))i†(DµΦ(x))i]} . (6.38)
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It is convenient to rewrite the appearing covariant derivatives, see (6.10) and (6.11),
by rotating W±, Z, A to their known mass eigenstates in (2.31) and by replacing
GD and GS with the gluon and pseudo-axial gluon combinations viaG

A

 = 1√
g2

D5 + g2
S5

 gS5 gD5

−gD5 gS5

GD

GS

 , (6.39)

where gs5 = gD5 cosϑ = gS5 sinϑ and which agrees with (5.10). Up to terms mixing
two fields, we find

(DµΦ(0))αᾱ = igs5v0T
a
αᾱ√

2Nc sinϑ cosϑ
Aa

µ + ∂µΦ(0)
αᾱ + bilinear terms,

(DµΦ̂) =

 −ig5v̂
2 W+

µ

ig5v̂

2
√

2 cos θW
Zµ

+ ∂µΦ̂ + bilinear terms,

(DµΦ(1))αᾱ =

 −ig5v1δαᾱ

2 cos θW

√
2Nc

Zµ + igs5v1T a
αᾱ√

2Nc sin ϑ cos ϑ
Aa

µ

−ig5v1δαᾱ

2
√

Nc
W−

µ

+ ∂µΦ(1)
αᾱ + bilinear terms,

(DµΦ(2))αᾱ =

 −ig5v2δαᾱ

2
√

Nc
W+

µ

ig5v2δαᾱ

2 cos θW

√
2Nc

Zµ + igs5v2T a
αᾱ√

2Nc sin ϑ cos ϑ
Aa

µ

+ ∂µΦ(2)
αᾱ + bilinear terms,

(6.40)
where again the vector notation refers to the isospin. Using these expression in
(6.38), we can read off the 5D mass terms, yielding

S
(5)
HS 3

∫
d4x

∫ πr

−πr
dx5

{
δ(|φ|)(MUV

A )2

2
Aa

µAaµ

+ δ(|φ| − π)
[(M IR

A )2

2
Aa

µAaµ +M2
WW+

µ W
−µ + M2

Z

2
ZµZ

µ
]}
, (6.41)

with

MG,A = 0, MW =
g5

√
v2

1 + v2
2 + v̂2

2
, MZ = MW

cos θW
, (6.42)

MUV
A = gs5 v0√

2Nc sinϑ cosϑ
, M IR

A =
gs5

√
v2

1 + v2
2√

2Nc sinϑ cosϑ
. (6.43)

We can compare MW and MZ with the expressions of the Minimal RS model in
(2.32). Since we have to reproduce the correct masses, the following condition must
be fulfilled

v2
1 + v2

2 + v̂2 = v2, (6.44)

which led to the inequality mentioned before in (6.35). Concerning the pseudo-axial
gluon, there is a mass term on each of the two branes. While MUV

A stems from the
vacuum expectation value of the Φ(0) field, M IR

A includes the contributions from the
VEVs of Φ(1) and Φ(2).
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Matching and EOM for the Pseudo-Axial Gluon

In order to link the mass terms to the boundary conditions of the pseudo-axial
gluon, we have to perform a matching calculation and derive the EOM for its profile
functions. We start by considering at most quadratic fields, that contain the pseudo-
axial gluon, yielding

− 1
4
(
∂[µA

a
ν]
)2 + 1

2
e−2σ(∂µA

a
5
)2 − 1

2
Aa

µ

(
∂5e

−2σ∂5A
aµ)− (∂µA

aµ)(∂5e
−2σAa

5
)

+ δ(|x5|)
[
MUV

A
(
∂µO

0,a
(0)I
)
Aaµ + 1

2
(
MUV

A
)2Aa

µAaµ
]

+ δ(|x5| − π)
[
M

(1)
A
(
∂µO

0,a
(1)I
)
Aaµ +M

(2)
A
(
∂µO

0,a
(2)I
)
Aaµ + 1

2
(
M IR

A
)2Aa

µAaµ
]
. (6.45)

The terms in the first line stem from LA in appendix A.17, when one writes out
the µ- and 5-components of Aa

M (including partial integrations). The remaining two
lines are obtained from the kinetic terms in (6.38). Concerning the brane localized
terms, we see that A couples to three neutral octet fields. We further defined

M
(x)
A ≡ gs5v

2
x√

2Nc sinϑ cosϑ
for x = 1, 2, (6.46)

which are the single mass terms stemming from Φ(1) and Φ(2). Adding their squared
values gives (

M IR
A
)2 =

(
M

(1)
A
)2 +

(
M

(2)
A
)2
. (6.47)

The problematic terms in (6.45) mix Aa
µ with Aa

5 or with one of the octets. As in
the Minimal RS model (2.33), we can choose a suitable gauge-fixing Lagrangian to
eliminate those terms,

LA
GF = − 1

2ξA

(
∂µA

aµ − ξA

[
δ(|x5|)MUV

A O0,a
(0)I + δ(|x5| − π)

{
M

(1)
A O0,a

(1)I +M
(2)
A O0,a

(2)I

}

+ ∂5e
−2σAa

5

])2

. (6.48)

Adding LA
GF to (6.45) and including also the kinetic terms for the relevant octets,

see (6.27), we find

− 1
4
(
∂[µA

a
ν]
)2 − 1

2ξA

(
∂µAaµ)2 + 1

2
e−2σ(∂µA

a
5
)2

− 1
2
Aa

µ

(
∂5e

−2σ∂5A
aµ)+ δ(|x5|)

1
2
(
MUV

A
)2Aa

µAaµ + δ(|x5| − π)1
2
(
M IR

A
)2Aa

µAaµ

− ξA
2

[
δ(|x5|)MUV

A O0,a
(0)I + δ(|x5| − π)

{
M

(1)
A O0,a

(1)I +M
(2)
A O0,a

(2)I

}
+ ∂5e

−2σAa
5

]2

+ δ(|x5|)
1
2
(
∂µO

0,a
(0)I
)2 + δ(|x5| − π)1

2

[(
∂µO

0,a
(1)I
)2 +

(
∂µO

0,a
(2)I
)2]

. (6.49)
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Inserting the KK decompositions for the pseudo-axial gluon in (5.14), we can inte-
grate (6.49) along x5 and try to match it on a sensible 4D theory. We do not give
the calculation steps here, but refer to [29], where the general procedure is discussed
in detail for the Z boson within the Minimal RS model. Adapted to our case, we
can infer the equation of motion of the pseudo-axial gluon from the second line in
(6.49), yielding

−∂5e
−2σ∂5χ

A
n =

(
mA

n

)2
χA

n − δ(|x5|)
(
MUV

A
)2
χA

n − δ(|x5| − π)
(
M IR

A
)2
χA

n . (6.50)

For the remaining terms, it is convenient to decompose the octet fields in terms of
the basis fields ϕ(n)a

A , that are the 4D modes when decomposing A5 as in (5.14). So,
we can write

O0,a
(0)I =

∑
n

bA,0
n ϕ

(n)a
A , O0,a

(1)I =
∑

n

bA,1
n ϕ

(n)a
A , O0,a

(2)I =
∑

n

bA,2
n ϕ

(n)a
A , (6.51)

with coefficients bA,0
n , bA,1

n and bA,2
n to be determined by the matching procedure.

Performing all steps, we finally obtain the conditions

aA
n = − 1

mA
n

, bA,0
n = MUV

A√
r

χA
n (0+)
mA

n

, bA,x
n = M

(x)
A√
r

χA
n (π−)
mA

n

, (6.52)

for x = 1, 2. Thus, on the basis of these conditions we can integrate (6.49) along the
extra-dimension leading to the following 4D action

∫
d4x

∑
n

{
− 1

4
(
∂[µA

(n)a
ν]

)2 − 1
2ξA

(
∂µA(n)aµ)2 +

(
mA

n

)2
2
A(n)a

µ A(n)aµ

+ 1
2
(
∂µϕ

(n)a
A

)2 − ξA
(
mA

n

)2
2

ϕ
(n)a
A ϕ

(n)a
A

}
, (6.53)

where the field ϕ(n)a
A represents for each mode the longitudinal degree of freedom of

the pseudo-axial gluon mode A(n)aµ.

Boundary Conditions for the Pseudo-Axial Gluon

Switching to t-notation, we can integrate the EOM in (6.50) along small intervals
around the branes. Making use of the relations (A.11) and (A.9), we obtain the
following BCs

∂tχ
A
n (t)

∣∣
t=ε+ = v2

0ε

M2
KK

Lg2
s

2Nc sin2 ϑ cos2 ϑ
χA

n (ε+), (6.54)

∂tχ
A
n (t)

∣∣
t=1− = −(v2

1 + v2
2)

M2
KK

Lg2
s

2Nc sin2 ϑ cos2 ϑ
χA

n (1−) . (6.55)
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In section (5.1), we discussed the boundary parameters (5.33), that were parametrized
through ζε and ζ1. Comparing them with (6.54) and (6.55), we can identify

ζε ≡
v0 ε

MKK
, ζ1 ≡

√
v2

1 + v2
2

v2 . (6.56)

We see that ζ1 must be smaller than one, due to the condition (6.44). This justifies
the parameter range [0.1, 10] for ζ1, that had been assumed in the numerical section
5.2.3. There, we also recognized that the exact value of ζε is not of relevance, as
long as it is not of order ε. Due to (6.56), this will not be the case for natural values
v0 ∼MPl ∼MEW/ε.

6.2. Scalar Potentials

For the potentials VUV and VIR in (6.6) and (6.7), one has to write down all possible
terms, that are hermitian, Lorentz invariant and that respect the symmetry under
the complete gauge group G in (6.2). We further limit ourselves to operator terms
up to mass dimension four.

UV Brane

Let us start with the potential at the UV brane, which is made up of one field Φ(0),
that is only charged under SU(3)D × SU(3)S . With respect to the symmetries, the
most general potential reads

VUV(Φ(0)) = −µ(0)
c Tr

[
Φ(0)†Φ(0)]+ λ

(0)
c1 Tr

[
Φ(0)†Φ(0)]Tr

[
Φ(0)†Φ(0)]

+ λ
(0)
c2 Tr

[
Φ(0)†Φ(0)Φ(0)†Φ(0)]

+
(
e(0) εαβγεᾱβ̄γ̄ Φ(0)

αᾱΦ(0)
ββ̄

Φ(0)
γγ̄ + h.c.

)
(6.57)

with real parameters µ(0)
c , λ(0)

c1 , λ(0)
c2 and one complex parameter e(0). Note that the

trace notation is again just a convenient way to pair the SU(3)D (SU(3)S) indices α
(ᾱ), analog to (6.9). The last term in (6.57) represents a fully antisymmetric product
of SU(3)D (SU(3)S) indices and is an invariant scalar under Gc, since

εαβγεᾱβ̄γ̄ Φ(0)
αᾱΦ(0)

ββ̄
Φ(0)

γγ̄
Gc−−→ εαβγεᾱβ̄γ̄U

D
αα′UD

ββ′UD
γγ′US∗

ᾱᾱ′US∗
β̄β̄′U

S∗
γ̄γ̄′Φ(0)

α′ᾱ′Φ(0)
β′β̄′Φ

(0)
γ′γ̄′

= det(UD) det(US∗)εα′β′γ′εᾱ′β̄′γ̄′Φ(0)
α′ᾱ′Φ(0)

β′β̄′Φ
(0)
γ′γ̄′ , (6.58)

and det(UD) = det(US∗) = 1. Actually this term is important, since it prevents an
additional global U(1) symmetry invariance of the potential, which would have been
allowed otherwise. This means that VUV does not admit a larger symmetry group
than Gc and we do not expect additional (physical) massless scalar fields.
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IR Brane

The potential at the IR brane is more complicated, since it involves the three distinct
scalar fields Φ(1), Φ(2) and Φ̂. We can split VIR into seven sub-potentials, each
including only terms made out of the fields that are given as arguments,

VIR
(
Φ(1),Φ(2), Φ̂

)
= V̂

(
Φ̂
)

+ V (1)(Φ(1))+ V (2)(Φ(2))+ V
(1,2)

mix
(
Φ(1),Φ(2))

+ V̂
(1)

mix
(
Φ(1), Φ̂

)
+ V̂

(2)
mix
(
Φ(2), Φ̂

)
+ V̂

(1,2)
mix

(
Φ(1),Φ(2), Φ̂

)
. (6.59)

Concerning the sub-potentials, that do not mix different fields, we find

V̂ (Φ̂) =− µ̂2∣∣Φ̂∣∣2 + λ̂
∣∣Φ̂∣∣4, (6.60)

V (x)(Φ(x)) =−
(
µ(x)

c

)2Tr
[
Φ(x)i†Φ(x)i]+ λ

(x)
c1 Tr

[
Φ(x)i†Φ(x)i]Tr

[
Φ(x)j†Φ(x)j]

+ λ
(x)
c2 Tr

[
Φ(x)i†Φ(x)j]Tr

[
Φ(x)j†Φ(x)i]

+ λ
(x)
c3 Tr

[
Φ(x)i†Φ(x)jΦ(x)i†Φ(x)j]

+ λ
(x)
c4 Tr

[
Φ(x)i†Φ(x)jΦ(x)j†Φ(x)i], (6.61)

for x = 1, 2 and where all appearing parameters are real. Comparing (6.61) with
(6.57), there are further terms due to different combinations of the SU(2)L indices
i and j. On the other hand, a fully antisymmetric term is not allowed, since Φ(x)

is charged under U(1)Y . Proceeding with the remaining sub-potentials, the allowed
terms mixing Φ(1) with Φ(2) and Φ(x) with Φ̂ are included in

V
(1,2)

mix
(
Φ(1),Φ(2)) = f1Tr

[
Φ(1)i†Φ(1)i]Tr

[
Φ(2)i†Φ(2)i]

+ f2Tr
[
Φ(1)i†Φ(1)j]Tr[Φ(2)j†Φ(2)i]

+ f3Tr
[
Φ(1)i†Φ(2)i]Tr

[
Φ(2)j†Φ(1)j]

+ f4Tr
[
Φ(1)i†Φ(2)j]Tr

[
Φ(2)j†Φ(1)i]

+ f5Tr
[
Φ(1)i†Φ(1)iΦ(2)j†Φ(2)j]+ f6Tr

[
Φ(1)i†Φ(1)jΦ(2)j†Φ(2)i]

+ f7Tr
[
Φ(1)i†Φ(2)iΦ(2)j†Φ(1)j]+ f8Tr

[
Φ(1)i†Φ(2)jΦ(2)j†Φ(1)i]

+ f9 εikεjlTr
[
Φ(1)i†Φ(1)j]Tr

[
Φ(2)k†Φ(2)l]

+ f10 εikεjlTr
[
Φ(1)i†Φ(2)j]Tr

[
Φ(2)k†Φ(1)l]

+ f11 εikεjlTr
[
Φ(1)i†Φ(1)jΦ(2)k†Φ(2)l]

+ f12 εikεjlTr
[
Φ(1)i†Φ(2)jΦ(2)k†Φ(1)l], (6.62)

V̂
(x)

mix
(
Φ(x), Φ̂

)
= c

(x)
1
∣∣Φ̂∣∣2Tr

[
Φ(x)i†Φ(x)j]+ c

(x)
2 Φ̂i†Φ̂jTr

[
Φ(x)j†Φ(x)i]

+ c
(x)
3 εikεjlΦ̂i†Φ̂jTr

[
Φ(x)k†Φ(x)l], (6.63)

where all appearing coefficients are real numbers. Up to now, the potential VIR
admits an enlarged symmetry, since each field Φ(1), Φ(2), Φ̂ can transform under its
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own U(1) group while still keeping all terms invariant. This issue gets resolved, when
we add the remaining sub-potential V (1,2)

mix restricting the global symmetry of VIR to
the complete group G. It is given by

V̂
(1,2)

mix
(
Φ(1),Φ(2), Φ̂

)
= d εik Φ̂i†Φ̂j†Tr

[
Φ(1)k†Φ(2)j]

+ e1 εijεklεαβγεᾱβ̄γ̄ Φ̂iΦ(1)j
αᾱ Φ(1)k

ββ̄
Φ(2)l

γγ̄

+ e2 εklεαβγεᾱβ̄γ̄ Φ̂i†Φ(2)i
αᾱ Φ(2)k

ββ̄
Φ(1)l

γγ̄ + h.c., (6.64)

where d, e1 and e2 are in general complex numbers.

Concerning the count of parameters, the UV potential involves 1 complex and 3
real parameters, while we encounter 3 complex and 30 real parameters in case of the
IR potential.

Requirements for SSB

Now, that we have the potential terms, the next step is to check if it can admit a
spontaneous symmetry breakdown at the VEVs given in (6.22). In general, there are
four conditions realistic potentials must comply [8]:

(1) Potential Value: In order to allow for a symmetry breakdown, the potential
value at the assumed VEV must lie below the corresponding value when the
fields are taken to be zero. In our case, this means

VUV
(〈

Φ(0)〉) < VUV
(
0
)
, VIR

(〈
Φ(1)〉, 〈Φ(2)〉, 〈Φ̂〉) < VIR

(
0, 0, 0

)
, (6.65)

which will lead to inequalities for the coefficient of both potentials.

(2) Extreme Value: To achieve a minimum at a VEV, it is necessary that the
derivatives of the potential vanish at this point (critical point). Using the
parametrization (6.17), this can be stated in our case as

∂VUV

∂φi,A∗
(0)

∣∣∣∣∣∣
0

= 0, ∂VIR

∂Φ̂i∗

∣∣∣∣
0

= 0, ∂VIR

∂φi,A∗
(x)

∣∣∣∣∣∣
0

= 0 . (6.66)

where i, x = 1, 2 and A = 0, 1, ..., 8 and the subscript 0 denotes the evaluation
at the VEVs in (6.22). With these equations, we can fix further parameters of
the potentials.

(3) Minimum: We locally obtain a minimum at a critical point, when the Hessian
matrix is positive-definite, meaning that all eigenvalues are larger than zero.
But in our case, we expect some eigenvalues to be zero, due to the Goldstone
bosons. This leads to a positive semi-definite Hessian and we can not use a
simple criteria to decide whether it is a minimum or not.
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(4) Boundedness from Below: To achieve a stable ground state, the potential
must be bounded from below. This will further restrict certain parameter
ranges for the coefficients.

While writing this thesis, we have completed the first two requirements and deter-
mined the Hessian matrix. Indeed we have found the expected eight zero-eigenvalues
for VUV as well as the eleven zero-eigenvalues for VIR.
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Summary & Outlook

This thesis deals with the εK obervable in the Randall-Sundrum model, that pushes
new physics effects into high energy regions, making the model phenomenologically
less attractive. We proposed an extension of the model by a pseudo-axial gluon that
could mitigate the tension between the theoretical and the experimental value from
a fine-tuning of O(1%) to O(10%) in the low MKK range of 1-2 TeV. Since the results
were not universal but relied on properties of the new gauge boson, we presented
a basic treatment of the enlarged Higgs sector. The discussion was divided in the
following way.

In the context of an effective field theory, we introduced the Standard Model and
elaborated on the Gauge and Yukawa Hierarchy Problems that arise due to the
naturalness principle (chapter 1). Being capable of solving both HPs by a warped
extra dimension and by promoting the SM fields to five-dimensional bulk fields (ex-
cept for the Higgs), we gave a detailed description of the Minimal Randall-Sundrum
model (chapter 2). Within this framework, we derived a general expression for the
five-dimensional gauge boson propagator, depending on the boundary conditions of
the considered particle at the UV and IR brane (chapter 3). Thus equipped, we
defined and explained the observable εK measuring indirect CP violation in the neu-
tral Kaon sector (chapter 4). Within the SM, we calculated eight box diagrams for
K0-K̄0 mixing and justified the small theoretical value of |εSM

K | ∼ 10−3 with the GIM
mechanism. Switching to the Randall-Sundrum model, we showed that the contri-
butions to εK are dominated by the exchange of the complete gluon tower. Although
the RS GIM mechanism was at work, the Wilson coefficients CRS

4 and CRS
5 received

an additional strong chiral enhancement spoiling the suppression effect. In order to
minimize these "dangerous" coefficients, we extended the strong gauge sector of the
Minimal RS model by replacing the color gauge group with Gc ≡ SU(3)D×SU(3)S ,
such that SU(2)L doublet and singlet fields transformed under different triplet rep-
resentations (chapter 5). By rotating the gauge fields of Gc, we obtained mass
eigenstates forming the known gluon and an additional massive pseudo-axial gluon,
whose relative sign coupling to mixed chirality quarks played the key role for mini-
mizing the gluon contributions in CRS

4 and CRS
5 . We calculated the combined effec-

tive Hamiltonian showing indeed that the leading contributions up to O(v2/M2
KK)

cancel independently of the boundary conditions. Still, the BC types could not be
chosen arbitrarily. While the (NN) case, leading to a massless pseudo-axial gluon,
was directly discarded we further focused on the remaining (NM), (MN) and (MM)
boundary conditions. The (NM) type implied a maximal mass of mA

0 ≤ 0.235MKK
for the lowest mode, which is in contradiction with experimental measurements. On
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the other hand, the (MN) BCs had to be excluded too, since it had forbidden to write
down any Yukawa terms at the IR brane. The remaining (MM) case was a priori
allowed and we parametrized the non-zero boundary conditions at the UV and IR
brane by ζε and ζ1 respectively. Therewith we performed the numerical analysis and
calculated for each of the 10000 physical parameter sets the εK values in the Minimal
RS model as well as in the extended version of it. For a mixing angle of ϑ = 45◦

and ζε = 1/ε, we encountered a mitigation of the εK fine-tuning from 3% (7%) to
12% (37%) in the MKK range of 1-2 TeV (2-3 TeV) . While the results stayed rather
robust under variations of ϑ and ζε, it demanded for ζ1 a value near by or smaller
than one: ζ1 . 1. To investigate allowed boundary conditions, we considered a mini-
mal implementation of the new Higgs sector of our enlarged model (chapter 6). Due
to the extended strong gauge group and the (MM) BCs of the pseudo-axial gluon,
we needed at least three scalar fields located at the IR brane and one at the UV
brane. We assumed sensible VEVs for these fields, that allowed for a breakdown of
Gc to its diagonal subgroup, the color group SU(3)c. Based on this, we calculated
the W±, Z boson mass terms and inferred the condition ζ1 ≤ 1, which was consistent
with the mitigation demand. At the end of the chapter we listed the potentials at
the UV and IR brane, including all symmetry invariant terms up to mass dimension
four. Finally we mentioned the criteria both potentials had to fulfill in order to al-
low for the assumed SSB and to turn our scalar sector into a realistic implementation.

As we have already mentioned in chapter 6, there are several questions that could
not be settled yet and need for a further investigation:

• In our extended RS model, the mass terms of the up- and down-type quarks are
smaller compared to the ones in the Minimal RS version. While this difference
can be absorbed into the bulk parameters, resulting in a shift of the quark
profiles towards the IR brane, the question raises how strong does this affect
the contributions to εK .

• Concerning the potentials at the UV and IR brane, one has to determine the
parameter ranges that allow for the spontaneous symmetry breakdown with the
VEVs we have been assuming. Furthermore, one has to ensure that the new
massive scalar octets and singlets are in agreement with current experimental
exclusion bounds.

• While performing the matching calculation for the pseudo-axial gluon, we have
seen that linear combinations of octets and singlets on the IR and UV brane
were eaten to provide the longitudinal degrees of freedom for the pseudo-axial
gluon. In this context, it is of general interest to understand how the degrees
of freedom are distributed among the massless scalars of the potentials and the
five-component of the gauge boson.

It is surely worthwhile to gain more insight into these subjects.
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A. Collection of Calculations &
Formulas

A.1. Randall-Sundrum Metric

Starting point is the gravity part of the classical Randall-Sundrum action in 2.19,
which gives rise to the following 5D Einstein equation√

|G|
(

1
2
R

(5)
MNR

(5) −R(5)
MN

)
︸ ︷︷ ︸

G
(5)
MN

= 1
4M3

Pl(5)

(
Λ(5)

√
|G|GMN + VUV

√
GUVGUV

µν δ
µ
Mδν

Nδ(x5)

+ VIR
√
GIRGIR

µνδ
µ
Mδν

Nδ(x5 − rπ)

)
. (A.1)

Using the ansatz 2.18 to calculate the Christoffel symbols ΓP
MN = 1

2 G
P R(∂MGNR +

∂NGRM − ∂RGMN ), one finds only two non-vanishing types

Γ5
µν = −(∂5σ)e−2σηµν and Γν

µ5 ≡ Γν
5µ = −(∂5σ)δν

µ . (A.2)

Straightforwardly, we can calculate the Ricci-tensor R(5)
MN = ∂P ΓP

MN − ∂N ΓP
MP +

ΓP
P QΓQ

MN − ΓP
MN ΓQ

MP and derive the Ricci-scalar R(5) = RMNG
MN , to obtain the

nonzero components of the 5D Einstein tensor G(5)
MN ,

Gµν =
[
3∂2

5σ − 6(∂5σ)2
]
ηµν and G55 = 6 (∂5σ)2 . (A.3)

Evaluating (A.1) for the (55)-component yields the solution

σ(φ) = r|φ|

√√√√− Λ(5)

24M3
Pl(5)

, (A.4)

which enforces a negative 5D cosmological constant. The above expression can only
be considered as a solution, if equation (A.1) is also fulfilled for the remaining (µν)
components. Therefore one needs the first and second derivatives of σ(φ),

∂φσ(φ) = sgnφk and ∂2
φσ(φ) = 2rk [δ(φ)− δ(φ− π)] , (A.5)

where we introduced the scale k ≡
√
− Λ(5)

24M3
Pl(5)

and took account of the 2π-periodicity

in φ. Inserting the derivatives into (A.3) and finally into the Einstein equations fixes
the "vacuum" energies to

VUV = −VIR = 24M3
Pl(5)k . (A.6)
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A.2. USEFUL RELATIONS BETWEEN φ AND T

A.2. Useful Relations between φ and t

Based on the definition t ≡ εekr|φ|, we can relate the differentials by

dt = sgnφkrt dφ = sgnφ Lt
π
dφ . (A.7)

When performing integrations over the fifth dimension, we can substitute t for φ,
leading to∫ π

−π
dφ −→ 2π

L

∫ 1

ε

dt

t
and

∫ π

−π
dφ eσ(φ) −→ 2π

Lε

∫ 1

ε
dt . (A.8)

Another convenient relation concerns the conversion of the boundary conditions

∂φχ(φ)
∣∣∣
0+

= aχ(0+) ⇐⇒ ∂tχ(t)
∣∣∣
ε+

= aπ

Lε
χ(ε+), (A.9)

∂φχ(φ)
∣∣∣
π−

= b χ(π−) ⇐⇒ ∂tχ(t)
∣∣∣
1−

= bπ

L
χ(1−), (A.10)

where χ(φ) is a general orbifold-even profile. Furthermore, such boundary conditions
can be inferred from the following equation of motion

−∂5e
−2σ∂5χ(φ) = m2

nχ(φ)− δ(|x5|)
2a
r
χn(φ) + δ(|x5| − rπ)2bε2

r
χ(φ), (A.11)

by integrating (A.11) along small intervals around the UV and IR brane.

A.3. Kinetic Part of the Gluon and the Pseudo-Axial
Gluon

In our extended RS model, the strong sector involves the gauge bosons GD and GS ,
whose field tensors are given by

(Ga
D)MN = ∂[M (Ga

D)N ] + gD5 f
abc (Gb

D)M (Gc
D)N , (A.12)

(Ga
S)MN = ∂[M (Ga

S)N ] + gS5 f
abc (Gb

S)M (Gc
S)N . (A.13)

Based on these, we can construct the kinetic action (without gauge fixing terms)

S
(5)
GBS 3

∫
d5x

√
|G|GKMGLN

[
−1

4
(Ga

D)KL(Ga
D)MN −

1
4

(Ga
S)KL(Ga

S)MN

]
, (A.14)

and rotate to the mass eigenstates G, A via (6.39). After several steps, we obtain

S
(5)
GBS 3

∫
d5x [LG + LA + LGA] , (A.15)
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with

LG =
√
|G|GKMGLN

[
−1

4
Ga

KLG
a
MN

]
, (A.16)

LA =
√
|G|GKMGLN

[
− 1

4
∂[KAa

L]∂[MAa
N ] − gs5(ctϑ − tnϑ)fabc(∂KAa

L)Ab
MAc

N

− g2
s5
4

(tn2
ϑ + ct2ϑ)fabcfadeAb

KAc
LAd

MAe
N

]
, (A.17)

LGA =
√
|G|GKMGLN

[
− gs5f

abc(∂KG
a
L)Ab

MAc
N −

gs5
2
fabc∂[KAa

L]G
b
[MA

c
N ]

− 1
4
g2

s5f
abcfadeGb

[KA
c
L]G

d
[MA

e
N ]

− 1
2
g2

s5f
abcfadeGb

KG
c
LAd

MAe
N

− 1
2
g2

s5(ctϑ − tnϑ)fabcfade(Gb
[KA

c
L])A

d
MAe

N

]
, (A.18)

where tnϑ ≡ tanϑ and ctϑ ≡ cotϑ.
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B. Input Parameter

B.1. Standard Model Values

For the numerical analysis in section 5.2, we need the SM parameters listed below
in table B.1. The stated quark masses are obtained from the experimental masses,
which are given within the references in the MS scheme, by evolving them to the
renormalization scale of 1.5 TeV.

Parameter Value Reference

mu (1.5± 1.0) MeV [11]

mc (550± 40) MeV [11]

mt (140± 5) GeV [11]

md (3.0± 2.0) MeV [11]

ms (50± 15) MeV [11]

mb (2.2± 0.1) GeV [11]

λ 0.2253± 0.0007 [11]

A 0.808+0.022
−0.015 [11]

ρ̄ 0.132+0.022
−0.014 [11]

η̄ 0.341± 0.013 [11]

MW (80.399± 0.023) GeV [11]

MZ (91.1876± 0.0021) GeV [11]

Table B.1.: SM values.

B.2. Magic Numbers

The parameters are taken from [51],

ai = (0.29, 0.69, 0.79, 1.1, 0.14)

b11
i = (0.82, 0, 0, 0, 0), c11

i = (0.016, 0, 0, 0, 0),
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b22
i = (0, 2.4, 0.011, 0, 0), c22

i = (0, 0.23, 0.002, 0, 0),
b23

i = (0, 0.63, 0.17, 0, 0), c23
i = (0, 0.018, 0.0049, 0, 0),

b32
i = (0, 0.019, 0.028, 0, 0), c32

i = (0, 0.0028, 0.0093, 0, 0),
b33

i = (0, 0.0049, 0.43, 0, 0), c33
i = (0, 0.00021, 0.023, 0, 0),

b44
i = (0, 0, 0, 4.4, 0), c44

i = (0, 0, 0, 0.68, 0.0055),
b45

i = (0, 0, 0, 1.5, 0.17), c45
i = (0, 0, 0, 0.35, 0.0062),

b54
i = (0, 0, 0, 0.18, 0), c54

i = (0, 0, 0, 0.026, 0.016),
b55

i = (0, 0, 0, 0.061, 0.82), c55
i = (0, 0, 0, 0.013, 0.018) .
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