Moderne Quantenfeldtheorie und Einführung in das Standardmodell (exercise sheet 6)

Matthias Neubert \& Raoul Malm
WS 2013/14
Hand-in on January 23th, 2014

1. Higgs decay into two photons: $\boldsymbol{h} \rightarrow \gamma \gamma(3+4+2$ points)

One interesting decay channel of the Higgs boson is its decay into two photons. While there is no renormalizable tree-level interaction vertex that couples a Higgs boson to two photons in the SM, the first (lowest-dimensional) non-renormalizable operators (after SSB) are given by

$$
\begin{equation*}
\mathcal{L}_{h \gamma \gamma}=c_{\gamma} \frac{\alpha_{e}}{6 \pi v} h F_{\mu \nu} F^{\mu \nu}+c_{\gamma 5} \frac{\alpha_{e}}{6 \pi v} h F_{\mu \nu} \tilde{F}^{\mu \nu} \tag{1}
\end{equation*}
$$

where $c_{\gamma}, c_{\gamma 5} \in \mathbb{C}, \alpha_{e} \equiv e^{2} / 4 \pi$ and $\tilde{F}_{\mu \nu}=-\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} F^{\alpha \beta}$ (with $\epsilon^{0123}=-1$). The goal of this exercise is to calculate the total unpolarized decay rate for the process $h \rightarrow \gamma \gamma$

$$
\Gamma(h \rightarrow \gamma \gamma)=\frac{1}{2 m_{h}} \int \frac{d^{3} k_{1}}{(2 \pi)^{3} 2 k_{1}^{0}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3} 2 k_{2}^{0}}(2 \pi)^{4} \delta^{(4)}\left(p-k_{1}-k_{2}\right) \sum_{\lambda_{1}= \pm 1} \sum_{\lambda_{2}= \pm 1}|\mathcal{M}|^{2},
$$

with respect to the tree-level interactions of the Lagrangian (1). Hereby, $\left(k_{1}, \lambda_{1}\right)$ and (k_{2}, λ_{2}) are the outgoing momenta and polarizations (only transverse) of the two photons, while p denotes the incoming momentum of the Higgs particle. Note that all external particles are on-shell, i.e. $p^{2}=m_{h}^{2}$ and $k_{1}^{2}=k_{2}^{2}=0$.
a) Derive and draw the Feynman rules for both terms in (1), with the convention that all external momenta are flowing into the vertex.
b) Write down the amplitude \mathcal{M} and then calculate the polarization summed and (absolutely) squared amplitude $\sum_{\lambda_{1}= \pm 1} \sum_{\lambda_{1}= \pm 1}|\mathcal{M}|^{2}$. In order to perform the sums, you can use the following completeness relation

$$
\begin{equation*}
\sum_{\lambda= \pm 1} \epsilon_{\mu}(p, \lambda) \epsilon_{\nu}^{*}(p, \lambda)=-\eta_{\mu \nu}+p_{\mu} \bar{p}_{\nu}+p_{\nu} \bar{p}_{\mu} \tag{2}
\end{equation*}
$$

where \bar{p} is a null-vector $\bar{p}_{\mu} \bar{p}^{\mu}=0$ and $p_{\mu} \bar{p}^{\mu}=-1$. In fact only the first term $-\eta_{\mu \nu}$ can give non-zero contributions since gauge invariance implies that the other two terms vanish when contracted with the corresponding terms in the amplitude. Finally, you should arrive at

$$
\begin{equation*}
\sum_{\lambda_{1}= \pm 1} \sum_{\lambda_{2}= \pm 1} \mathcal{M}^{*} \mathcal{M}=2\left(\frac{2 \alpha_{e}}{3 \pi v}\right)^{2}\left(k_{1} \cdot k_{2}\right)^{2}\left(\left|c_{\gamma}\right|^{2}+\left|c_{\gamma 5}\right|^{2}\right) \tag{3}
\end{equation*}
$$

c) The last step is to calculate the decay amplitude, where the Higgs particle is at rest. Performing out all integrations the final result should be given by

$$
\begin{equation*}
\Gamma(h \rightarrow \gamma \gamma)=\left(\frac{\alpha_{e}}{4 \pi}\right)^{2} \frac{m_{h}^{3}}{9 \pi v^{2}}\left(\left|c_{\gamma}\right|^{2}+\left|c_{\gamma 5}\right|^{2}\right) . \tag{4}
\end{equation*}
$$

Please write down how long it took you to solve the exercises.

