Moderne Quantenfeldtheorie und Einführung in das Standardmodell (exercise sheet 2)

Matthias Neubert \& Raoul Malm
WS 2013/14
Hand-in on November 14th, 2013

1. Spin-1 propagators and gauge-fixing ($2+2+3+2$ points)

Consider the following action

$$
\begin{equation*}
\mathcal{S}_{0}=-\frac{1}{4} \int d^{4} x F_{\mu \nu}(x) F^{\mu \nu}(x) \quad \text { with } \quad F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x) . \tag{1}
\end{equation*}
$$

a) Show that in momentum space it reads

$$
\begin{equation*}
\mathcal{S}_{0}=\frac{1}{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{A}^{\mu}(p) \mathcal{O}_{\mu \nu} \tilde{A}^{\nu}(-p) \quad \text { with } \quad \mathcal{O}_{\mu \nu}(p)=-\left(\eta_{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) p^{2}, \tag{2}
\end{equation*}
$$

where $\tilde{A}_{\mu}(p)$ denotes the Fourier-transform of $A_{\mu}(x)$.
b) Consider the operators (transversal and longitudinal)

$$
\begin{equation*}
P_{\mu \nu}^{T}=\eta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}, \quad P_{\mu \nu}^{L}=\frac{p_{\mu} p_{\nu}}{p^{2}}, \tag{3}
\end{equation*}
$$

and show, that they are generalized projection operators in the sense, that

$$
\begin{equation*}
P_{\mu \nu}^{T} P^{T \nu \lambda}=P_{\mu}^{T \lambda}, \quad P_{\mu \nu}^{L} P^{L \nu \lambda}=P_{\mu}^{L \lambda}, \quad P_{\mu \nu}^{T} P^{L \nu \lambda}=0, \quad P_{\mu \nu}^{T}+P_{\mu \nu}^{L}=\eta_{\mu \nu} . \tag{4}
\end{equation*}
$$

c) A general property of the propagator is that it is a Green's function, i.e. it is the inverse of the operators appearing in the quadratic terms in a lagrangian. In momentum space and in case of the abelian theory (2), the propagator $\tilde{\Delta}_{\mu \nu}(p)$ can be defined via

$$
\begin{equation*}
\tilde{\Delta}_{\mu \nu}(p) \mathcal{O}^{\nu \lambda}(p)=i \delta_{\mu}^{\lambda} . \tag{5}
\end{equation*}
$$

Show that there exists no inverse for the operator $\mathcal{O}^{\nu \lambda}(p)$ by making a general ansatz for $\tilde{\Delta}_{\mu \nu}(p)$ using $P_{\mu \nu}^{T}$ and $P_{\mu \nu}^{L}$. This is one way to see that a sensible definition of the quantum theory requires gauge fixing by adding a Lagrangian multiplier, such that

$$
\begin{equation*}
\mathcal{S}_{0, \xi}=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)-\frac{1}{2 \xi}\left(\partial_{\mu} A^{\mu}(x)\right)^{2}\right], \tag{6}
\end{equation*}
$$

where $\xi \in \mathbb{R}$ is the gauge fixing parameter. Calculate the corresponding operator $\mathcal{O}_{\mu \nu}^{\xi}(p)$ in momentum space and show that it is well-defined and reads

$$
\begin{equation*}
\tilde{\Delta}_{\mu \nu}^{\xi}(p)=\left(-\eta_{\mu \nu}+(1-\xi) \frac{p_{\mu} p_{\nu}}{p^{2}}\right) \frac{i}{p^{2}} . \tag{7}
\end{equation*}
$$

d) Now consider a massive spin-1 particle by adding a mass term to the original action (1), such that

$$
\begin{equation*}
\mathcal{S}_{0, m}=\int d^{4} x\left[-\frac{1}{4} F_{\mu \nu}(x) F^{\mu \nu}(x)+\frac{1}{2} m_{A}^{2} A_{\mu}(x) A^{\mu}(x)\right], \tag{8}
\end{equation*}
$$

and derive the corresponding propagator $\tilde{\Delta}_{\mu \nu}^{m}(p)$ in momentum space.

2. Solutions to the Dirac equation (3+2+2 points)

For an antiparticle in the rest frame, i.e. with momentum $p_{R}=\left(m, \overrightarrow{0}^{T}\right)$ and mass m, the general solution to the free Dirac equation reads

$$
\begin{equation*}
v\left(p_{R}, s\right)=\sqrt{m}\binom{\eta_{s}}{-\eta_{s}} \tag{9}
\end{equation*}
$$

where η_{s} is a two-component spinor of the rotation group describing the spin-orientation of the Dirac solution, and is normalized to $\eta_{s}^{\dagger} \eta_{s}=1$ for $s \in\{1,2\}$. In the following, use the chiral (Weyl) representation of the Dirac matrices.
a) First, check that (9) solves the Dirac equation for an antiparticle in momentum space. Now consider a boost along the 3-direction with rapidity λ, which transforms the 4 -momentum vector to

$$
\binom{p^{0}}{p^{3}}=\exp \left[\eta\left(\begin{array}{ll}
0 & 1 \tag{10}\\
1 & 0
\end{array}\right)\right]\binom{p_{R}^{0}}{p_{R}^{3}},
$$

while leaving the transversal components p_{R}^{1} and p_{R}^{2} invariant. Review the transformation behavior of a spinor as given in the lecture and calculate

$$
v(p, s)=\exp \left(-i \lambda J^{03}\right) v\left(p_{R}, s\right) \quad \text { mit } \quad J^{03}=-\frac{i}{2}\left(\begin{array}{cc}
\sigma^{3} & 0 \tag{11}\\
0 & -\sigma^{3}
\end{array}\right) .
$$

You should arrive at the following result

$$
\begin{equation*}
v(p, s)=\binom{\sqrt{p \cdot \sigma} \eta_{s}}{-\sqrt{p \cdot \bar{\sigma}} \eta_{s}}, \quad u(p, s)=\binom{\sqrt{p \cdot \sigma} \xi_{s}}{\sqrt{p \cdot \bar{\sigma}} \xi_{s}} \tag{12}
\end{equation*}
$$

where the solution for the particle spinor $u(p, s)$ was added for the sake of completeness.
b) Verify the normalization properties

$$
\begin{equation*}
\bar{u}(p, r) u(p, s)=2 m \delta_{r s}, \quad \bar{v}(p, r) v(p, s)=-2 m \delta_{r s} \tag{13}
\end{equation*}
$$

and the completeness relations

$$
\begin{equation*}
\sum_{s=1}^{2} u(\vec{p}, s) \bar{u}(\vec{p}, s)=\not p+m, \quad \quad \sum_{s=1}^{2} v(\vec{p}, s) \bar{v}(\vec{p}, s)=\not p-m \tag{14}
\end{equation*}
$$

while using that $\xi_{r}^{\dagger} \xi_{s}=\delta_{r s}=\eta_{r}^{\dagger} \eta_{s}$ and $\sum_{s=1,2} \xi_{s} \xi_{s}^{\dagger}=1=\sum_{s=1,2} \eta_{s} \eta_{s}^{\dagger}$.
c) Now we switch to the helicity basis for the 2-component spinors, that describe the spin orientation. We introduce $\xi_{ \pm}$and $\eta_{ \pm}$that are eigenspinors of the helicity operator $h \equiv \frac{\vec{p} \cdot \vec{\sigma}}{2|\vec{p}|}$. A convenient ansatz for the solutions to the Dirac equation is given by

$$
\begin{equation*}
u(p, \pm)=\sqrt{\frac{p^{0}+m}{2}}\binom{\lambda_{ \pm} \xi_{ \pm}}{\lambda_{\mp} \xi_{ \pm}}, \quad v(p, \pm)=\sqrt{\frac{p^{0}+m}{2}}\binom{\lambda_{\mp} \eta_{ \pm}}{-\lambda_{ \pm} \eta_{ \pm}} \tag{15}
\end{equation*}
$$

where $\lambda_{ \pm}=\left(p^{0}+m \mp|\vec{p}|\right) /\left(p^{0}+m\right)$. Determine the eigenvalues to $\xi_{ \pm}, \eta_{ \pm}$of the helicity operator by demanding that the spinors in (15) fulfill the corresponding Dirac equations in momentum space. Then consider the massless limit $m \rightarrow 0$. What is the relationship between chirality and helicity for a particle and an antiparticle?
3. The Lorentz algebra ($3+3$ points)
a) Given the defining relations for the Dirac algebra $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$, show that the matrices

$$
\begin{equation*}
S^{\mu \nu}=\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right], \tag{16}
\end{equation*}
$$

satisfy the algebra of the generators of the Lorentz group, i.e.

$$
\begin{equation*}
\left[S^{\mu \nu}, S^{\alpha \beta}\right]=i\left(\eta^{\mu \beta} S^{\nu \alpha}+\eta^{\nu \alpha} S^{\mu \beta}-\eta^{\mu \alpha} S^{\nu \beta}-\eta^{\nu \beta} S^{\mu \alpha}\right) \tag{17}
\end{equation*}
$$

b) Show the following transformation property of the Dirac matrices

$$
\begin{equation*}
D^{-1}(\Lambda) \gamma^{\mu} D(\Lambda)=\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}, \tag{18}
\end{equation*}
$$

under proper and orthochronous Lorentz transformations $\Lambda \in L_{+}^{\uparrow}$ by considering an infinitesimal transformation $\Lambda^{\mu}{ }_{\nu}=\eta_{\nu}^{\mu}+w^{\mu}{ }_{\nu}$, where $\left|w^{\mu}{ }_{\nu}\right| \ll 1$ for each entry. Remember that a global Lorentz transformation in spinor space is given by $D(\Lambda)=$ $\exp \left(-\frac{i}{2} w_{\mu \nu} S^{\mu \nu}\right)$.

Please write down how long it took you to solve the exercises.

