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1 The Master Formula

The goal of the following problem is to derive the master formula (a, b > 0)
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∫
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for momentum integrals in a d-dimensional Euclidean space (d > 0), where l2E =
∑d

i=1 l
2
i is

the square of the length of the d-dimensional momentum vector. Assume that b > a+d/2
and ∆ 6= 0, so that the integral converges as l2E →∞ and l2E → 0.

1.1 [2 points]

Factorize the d-dimensional measure as

ddlE = dΩd−1(l2E)d/2−1d(lE)2

2
, (2)

where dΩd−1 is the integration measure for the (d− 1) angular coordinates of the sphere
Sd−1 = {x ∈ Rd :

∑n
i=1 x

2
i = 1}, and l2E with 0 ≤ l2E < ∞ is the square of the radial

coordinate. Use the fact that
√
π =

∫ +∞
−∞ dxe−x

2
to express πd/2 as an integral over

d-dimensional Euclidian space, and evaluate the radial integral using the definition

Γ(z) =

∫ ∞
0

dt tz−1 e−t, (3)

of the Γ-function. Note that for integer argument Γ(n) = (n − 1)!, and that in general
Γ(1 + z) = zΓ(z). Calculate the area

∫
dΩd−1 of the sphere Sd−1 (i.e. the surface of the

ball Bd = {x ∈ Rd :
∑n

i=1 x
2
i ≤ 1}).

1.2 [3 points]

Evaluate the integral Id(a, b; ∆) using the substitution l2E/∆ = (1−x)/x and the definition

B(z, w) =

∫ 1

0

dx xz−1 (1− x)w−1 =
Γ(z)Γ(w)

Γ(z + w)
, (4)

of the Euler β-function, and derive the master formula (1).

1.3 [3 points ]

The beauty of the master formula is that, by analytic continuation, it can be used to
define the value of the integral Id(a, b; ∆) for arbitrary values of the exponents a and b, as
well as for an arbitrary value of the space-time dimension d. Note that the function Γ(z)
is analytic in the complex z plane except for poles at z = 0,−1,−2, . . . . The divergent
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behaviour of the original integral is reflected in the presence of poles for specific values
of a, b, and d. Choosing a value for d different from the physical value d = 4 is by far
the most convenient way of regularizing divergent momentum integrals. This method is
called dimensional regularisation and was invented by the Nobel Laureates G. ’t Hooft
and M. Veltman.

Consider, as an example, the case where a = 0 and b = 2. The integral I4(0, 2; ∆) in
4 dimensions is logarithmically divergent for l2E → ∞, as indicated by the pole of the
factor Γ(b − a − d/2) in the master formula. However, the integral converges in a space
with less than 4 dimensions. Derive the expression for Id(0, 2; ∆) assuming that d < 4.
Now set d = 4 − 2ε and consider ε > 0 as an infinitesimal parameter, never mind that
we have little intuition about the geometry of a space with non-integer dimensionality.
Derive an expression for the product µ4−d Id(0, 2; ∆) as a Laurent series in ε, dropping
terms that vanish in the limit ε→ 0 (the factor µ4−d is inserted so as to make the result
dimensionless). Use the expansion Γ(ε) = 1/ε−γE +O(ε), where γE = 0.577 . . . is Euler’s
constant, and introduce the notation 1/ε̂ = 1/ε− γE + ln(4π) to simplify the answer.

2 Independence of the regularisation scheme [6 points]

Let us consider the logarithmically divergent momentum integral

Π(s) =

∫
d4k

(2π)4

1

(k2 − s+ iε)2
, (5)

that can arise, e.g. from a 1-loop diagram with two massive bosonic propagators and
external momenta set to zero. In order to work with a well-defined integral we can
regularise it by introducing a hard momentum-cutoff (Pauli-Villars regularisation) and
define

ΠΛ(s) =

∫
d4k

(2π)4

1

(k2 − s+ iε)2

−Λ2

k2 − Λ2 + iε
, (6)

or by allowing for a deviation in the space-time dimension d = 4− 2ε with ε > 0 (dimen-
sional regularisation)

Πd(s) =

∫
ddk

(2π)d
1

(k2 − s+ iε)2
. (7)

Now, we consider the following renormalised integrals

Πren
1 (s) ≡ lim

Λ→∞

[
ΠΛ(s)− ΠΛ(s0)

]
, Πren

2 (s) ≡ lim
d→4

[
Πd(s)− Πd(s0)

]
, (8)

that are defined in order to respect the renormalisation condition Πren(s0) = 0 at the scale
s0. Calculate Πren

1 and Πren
2 and show that both are identical.
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