# Quantenfeldtheorie und Theoretische Elementarteilchenphysik (exercise sheet 7) 

Tobias Hurth, Andreas v. Manteuffel \& Raoul Malm
SS 2014
Questions: malmr@uni-mainz.de
Hand-in on July 1st, 2014

## 1 Checking gauge invariance in QCD

Consider the process $q \bar{q} \rightarrow g g$ of the production of two gluons from the annihilation of a quark and an anti-quark, the contributing diagrams at leading order can be seen below.
(A)

(B)

(C)


Here $p_{1}, p_{2}$ are the momenta of the incoming quark, anti-quark with $p_{i}^{2}=m^{2}$ and $a, b=$ $1, \ldots, 8$ are the color indices of the outgoing gluons with momenta $k_{1}, k_{2}$ and $k_{i}^{2}=0$.

## 1.1 [6 points]

First write down the amplitudes $\left(M_{A}^{\mu \nu}\right)_{a b}$ and $\left(M_{B}^{\mu \nu}\right)_{a b}$ for diagrams (A) and (B). The physical amplitude can be obtained by adding them up to

$$
\begin{equation*}
M_{a b}^{A+B}=\left[\left(M_{A}^{\mu \nu}\right)_{a b}+\left(M_{B}^{\mu \nu}\right)_{a b}\right] \epsilon_{\mu}^{\star}\left(k_{1}, \lambda_{1}\right) \epsilon_{\nu}^{\star}\left(k_{2}, \lambda_{2}\right), \tag{1}
\end{equation*}
$$

where $\epsilon_{\mu}\left(k_{i}, \lambda_{i}\right)$ are the gluon polarizations vectors. For physical gluons those are transverse, i.e.

$$
k_{i}^{2}=0, \quad \lambda_{i}= \pm 1, \quad k_{i}^{\mu} \epsilon_{\mu}\left(k_{i}, \lambda_{i}\right)=0
$$

Gauge invariance implies that we are allowed to shift e.g. $\epsilon_{\mu}\left(k_{1}, \lambda_{1}\right) \rightarrow \epsilon_{\mu}\left(k_{1}, \lambda_{1}\right)-\alpha k_{1 \mu}$, where $\alpha$ is some constant number. In order to check the principle of gauge invariance calculate

$$
\begin{equation*}
k_{1 \mu}\left[\left(M_{A}^{\mu \nu}\right)_{a b}+\left(M_{B}^{\mu \nu}\right)_{a b}\right] . \tag{3}
\end{equation*}
$$

Explain why the result is not zero and compare to the case of QED.

## 1.2 [4 points]

Now calculate the amplitude $\left(M_{C}^{\mu \nu}\right)_{a b}$ for diagram (C) using the Feynman-'t Hooft gauge $\xi=1$ for the gluon propagator. Check again the result this time for

$$
\begin{equation*}
k_{1 \mu}\left[\left(M_{A}^{\mu \nu}\right)_{a b}+\left(M_{B}^{\mu \nu}\right)_{a b}+\left(M_{C}^{\mu \nu}\right)_{a b}\right] . \tag{4}
\end{equation*}
$$

Show that if in addition the $\nu$ index is contracted with the transverse gluon polarization vector $\epsilon_{\nu}\left(k_{2}, \lambda_{2}\right)$ the expression vanishes.

## 2 Unitarity and ghosts

This exercise will demonstrate that we need ghosts to preserve unitarity in QCD. For that purpose we consider the example of a loop process $q \bar{q} \rightarrow q \bar{q}$ with 2 gluon (virtual) intermediate states. The following diagrams contribute to the process at one-loop order.


From the unitarity condition of the $S$-matrix $S^{\dagger} S=1$ one can derive a relation for the elastic scattering process where the initial and final states are the same. Defining the scattering amplitude $T$ via $S=1-i T$ one can derive the relation (no summation over $i$ )

$$
\begin{equation*}
2 \operatorname{Im} T_{i i}=-\sum_{n}\left(T^{\dagger}\right)_{i n}(T)_{n i}, \tag{5}
\end{equation*}
$$

that must be valid if the total probability is conserved. Here $T_{n i}$ means the scattering amplitude for the process of a state $|i\rangle$ scattering into a state $|n\rangle$. In our case the sum over intermediate states $|n\rangle$ involves two gluon states, while the state $|i\rangle$ is composed of a quark and an anti-quark. The right- (RHS) and the left-(LHS) hand side can be calculated to

$$
\begin{align*}
\text { RHS } & =-\frac{1}{2} \int d \Omega^{(2)} T_{a b}^{\dagger \mu \nu}\left(-g_{T}\right)_{\mu \mu^{\prime}}\left(-g_{T}\right)_{\nu \nu^{\prime}} T_{a b}^{\mu^{\prime} \nu^{\prime}}  \tag{6}\\
\text { LHS } & =-\frac{1}{2} \int d \Omega^{(2)} T_{a b}^{\dagger \mu \nu}\left(-g_{\mu \mu^{\prime}}\right)\left(-g_{\nu \nu^{\prime}}\right) T_{a b}^{\mu^{\prime} \nu^{\prime}} \tag{7}
\end{align*}
$$

where $T_{a b}^{\mu \nu}=i\left(M_{A}^{\mu \nu}+M_{B}^{\mu \nu}+M_{C}^{\mu \nu}\right)_{a b}$ with the amplitudes that have been calculated in the previous exercise task 1. Here, $\Omega^{(2)}$ is the phase-space for two gluons in the intermediate states. The transverse projector involves only transverse gluon polarizations and is defined by

$$
\begin{equation*}
\left(-g_{T}\right)_{\mu \mu^{\prime}} \equiv \sum_{\lambda_{1}= \pm 1} \epsilon_{\mu}(1) \epsilon_{\mu^{\prime}}^{*}(1), \quad\left(-g_{T}\right)_{\nu \nu^{\prime}} \equiv \sum_{\lambda_{2}= \pm 1} \epsilon_{\nu}(2) \epsilon_{\nu^{\prime}}^{*}(2) \tag{8}
\end{equation*}
$$

where $\epsilon_{\mu}(i) \equiv \epsilon_{\mu}\left(k_{i}, \lambda_{i}\right)$. In case of two gluons we can add scalar and longitudinal polarizations by introducing the Sudakov unit-vectors $\hat{k}_{1}, \hat{k}_{2}$ such that the metric can be written as

$$
\begin{equation*}
-g^{\mu \mu^{\prime}}=\left(-g_{T}\right)^{\mu \mu^{\prime}}-\frac{1}{2}\left(\hat{k}_{1}^{\mu} \hat{k}_{2}^{\mu^{\prime}}+\hat{k}_{1}^{\mu^{\prime}} \hat{k}_{2}^{\mu}\right), \quad-g^{\nu \nu^{\prime}}=\left(-g_{T}\right)^{\nu \nu^{\prime}}-\frac{1}{2}\left(\hat{k}_{1}^{\nu} \hat{k}_{2}^{\nu^{\prime}}+\hat{k}_{1}^{\nu^{\prime}} \hat{k}_{2}^{\nu}\right), \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{k}_{1}^{\mu} \equiv \sqrt{\frac{2}{k_{1} \cdot k_{2}}} k_{1}^{\mu}, \quad \quad \hat{k}_{2}^{\mu} \equiv \sqrt{\frac{2}{k_{1} \cdot k_{2}}} k_{2}^{\mu} \tag{10}
\end{equation*}
$$

### 2.1 Unitarity in general [2 points]

Derive relation (5). Start from the unitarity condition $S^{\dagger} S=1$ and consider the scattering of an initial state $|i\rangle$ into a final state $|f\rangle$. Insert then a complete set of intermediate states $\sum_{n}|n\rangle\langle n|$. Finally specialize to the case $|i\rangle=|f\rangle$.

## 2.2 [1 point]

Check the first equation in (9) by contracting both sides with $\left(k_{1}\right)_{\mu}$.

### 2.3 Check unitarity for $q \bar{q} \rightarrow q \bar{q}$ [4 points]

Next we can calculate the difference

$$
\begin{equation*}
\Delta T \equiv \mathrm{RHS}-\mathrm{LHS}, \tag{11}
\end{equation*}
$$

where you can simplify the expression by using the properties of the amplitudes $T_{a b}^{\mu \nu}$ when contracted with the gluon momenta and polarizations. Only terms coming from the longitudinal part of $g_{\mu \mu^{\prime}}$ and $g_{\nu \nu^{\prime}}$ remain. Show with the results from the previous exercise (use your own results in case you have other sign conventions)

$$
\begin{align*}
& \hat{k}_{1 \mu^{\prime}} T_{a b}^{\mu^{\prime} \nu^{\prime}}=i g^{2} f_{a b c} T_{c} \bar{v}\left(p_{2}, s_{2}\right) \frac{\hat{k}_{2}^{\nu^{\prime}} k_{1}}{2 k_{1} \cdot k_{2}} u\left(p_{1}, s_{1}\right),  \tag{12}\\
& \hat{k}_{2 \nu^{\prime}} T_{a b}^{\mu^{\prime} \nu^{\prime}}=-i g^{2} f_{a b c} T_{c} \bar{v}\left(p_{2}, s_{2}\right) \frac{\hat{k}_{1}^{\mu^{\prime}} k_{2}}{2 k_{1} \cdot k_{2}} u\left(p_{1}, s_{1}\right), \tag{13}
\end{align*}
$$

where $T_{c}$ is a generator of $S U(3)$ and $f_{a b c}$ are the structure constants, that the remaining terms can be expressed by

$$
\begin{equation*}
\Delta T=\int d \Omega^{(2)} T_{a b}^{\dagger} T_{a b} \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{a b} \equiv i g^{2} f_{a b c} T_{c} \bar{v}\left(p_{2}, s_{2}\right) \frac{\not k_{1}-\not k_{2}}{4 k_{1} \cdot k_{2}} u\left(p_{1}, s_{1}\right) \tag{15}
\end{equation*}
$$

This would mean that unitarity is violated by the diagrams with 2 longitudinally polarized intermediate gluons.

### 2.4 Restoration of unitarity [3 points]

We can add extra unphysical fields (ghosts, represented by dotted lines) so that they restore unitarity. Use the Feynman rule for ghosts and calculate the following diagram

$$
-i \tilde{T}_{a b}=\underbrace{2}_{p^{2}} \quad \underbrace{2}_{2}
$$

Then you can check that the ghost contribution

$$
\begin{equation*}
\int d \Omega^{(2)} \tilde{T}_{a b}^{\dagger} \tilde{T}_{a b} \tag{16}
\end{equation*}
$$

to the LHS of (5) precisely cancels the remaining scalar and longitudinal contributions from the gluon in (14).

