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1 Ward identities in QED

The generating functional for quantum electrodynamics (QED) in R, gauge is of the form
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where N is a normalization factor and with the Lagrangian
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where ¢ is the gauge-fixing parameter.

1.1 (4 points)

Show that if we require that the generating functional Z[n, 7, J] is to be invariant under
an infinitesimal U(1) gauge transformation

A, (z) = Au(x) + 0,0(x) and W(x) = P(x) —iea(x)(x), (3)
we get the following relation
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which is called the Ward-Takahashi identity. Remark: be careful with the anti-commuting
nature of the fermion fields and sources.

1.2 (4 points)

Translate the identity (4) into an equation of the generating functional for the connected
Green’s functions W(n, 7, J] by Z = e'V'. Then we define a new functional I'[¢), 1, 4,] as
the Legendre transform of Wn,n, J,]
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are usually called the classical fields. Express the Ward-Takahashi identity in terms of
the functional I'[¢), ¢, A,,].



1.3 (4 points)

Now differentiate the result of part (1.2) with respect to 1)(x1) and v (z;) and then set
Y =1 = A, = 0 afterwards. You should obtain
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where the notation is such that you first perform the functional derivatives and then set
Y =1 = A, = 0. Then transform this expression to momentum space by multiplying
it with exp[—i(pz1 + qrs — p'z2)] and integrating it over the position coordinates. You
should obtain the familiar form of the Ward identity,
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where the proper vertex function I', and the dressed propagator S are related to the
functional I' by
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Then draw a diagrammatic representation of the Ward-Takahashi identity (7).
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1.4 (1 point)

Check the Ward-Takahashi identity (7) at leading order (tree-level). Note that I',(p, ¢, p+
q) is defined without the electromagnetic charge e.

1.5 (7 points)

Now we want to check the identity at next-to-leading order (one-loop level). For this
purpose we stick to the case of vanishing photon momentum ¢ = 0. In this case (7) can
be expressed in the following form

Lu(p.0,p) — 7 = — o®) ®)

OpH
where ¥(p) contains only 1 particle-irreducible diagrams for the self-energy. At next-to-
leading order you need to calculate the two amputated (without external propagators)
amplitudes below (you do not need to perform the loop momentum integration), where
an abbreviation is defined A,(p,0,p) = ',(p,0,p) — V.

X(p) = % Au(p,0,p)

Note that you can work in the Feynman-"t Hooft gauge (¢ = 1) for the photon propagators.
Then you can compare both amplitudes and check (8).



