Quantenfeldtheorie und Theoretische Elementarteilchenphysik

(exercise sheet 5)

Tobias Hurth, Andreas v. Manteuffel \& Raoul Malm
SS 2014
Questions: malmr@uni-mainz.de
Hand-in on June 3rd, 2014

1 Grassmann variables

In an n-dimensional Grassmann algebra the n generators $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ satisfy

$$
\begin{equation*}
\left\{x_{i}, x_{j}\right\}=0 \quad i, j=1,2,3, \ldots, n \tag{1}
\end{equation*}
$$

and every element can be expanded in a finite series

$$
\begin{equation*}
f(x)=f^{(0)}+f_{i_{1}}^{(1)} x_{i_{1}}+f_{i_{1}, i_{2}}^{(2)} x_{i_{1}} x_{i_{2}}+\cdots+f_{i_{1}, \ldots, i_{n}}^{(n)} x_{i_{1}} \ldots x_{i_{n}} \tag{2}
\end{equation*}
$$

where each of the summed-over indices $i_{1}, i_{2}, \ldots, i_{n}$ ranges from 1 to n. The expansion terminates because of (1). To perform integrations we need the symbols $d x_{1}, d x_{2}, \ldots, d x_{n}$ which are introduced to satisfy the conditions

$$
\begin{equation*}
\left\{d x_{i}, d x_{j}\right\}=0, \quad \int d x_{i}=0, \quad \int d x_{i} x_{j}=\delta_{i j} . \tag{3}
\end{equation*}
$$

1.1 [3 points]

Let us change the integration variable to $x_{i}^{\prime}=M_{i j} x_{j}$, where x, x^{\prime} are Grassmann-valued vectors with $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x^{\prime T}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)$ and where M is a $n \times n$ matrix with $\operatorname{det} M \neq 0$. Show that this change of integration variables leads to

$$
\begin{equation*}
\int d x_{n}^{\prime} \ldots d x_{1}^{\prime} f\left(x^{\prime}\right)=\int d x_{n} \ldots x_{1}[\operatorname{det} M]^{-1} f\left(x^{\prime}(x)\right) \tag{4}
\end{equation*}
$$

1.2 [3 points]

Next evaluate the Gaussian integral

$$
\begin{equation*}
G(A)=\int d y_{n} d x_{n} \ldots d y_{1} d x_{1} \exp \left[x^{T} A y\right] \tag{5}
\end{equation*}
$$

where x, y are Grassmann-valued vectors with $x^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y^{T}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and A is a $n \times n$ matrix with $\operatorname{det} A \neq 0$.

2 Minus sign for a fermion loop

In this exercise we want to show that a fermion loop leads to an additional minus sign relative to the hypothetical case if fermions would obey Bose-Einstein statistics. As an example consider the loop diagram with two external scalar fields, as shown below.

The scalar-fermion-fermion interaction is given by

$$
\begin{equation*}
\mathcal{L}_{\mathrm{int}}(\bar{\psi}, \psi, \phi)=-g \phi \bar{\psi} \psi \tag{6}
\end{equation*}
$$

where g is a dimensionless coupling. The generating functional reads

$$
\begin{equation*}
Z[\eta, \bar{\eta}, J]=\exp \left[i \int d^{4} x \mathcal{L}_{\text {int }}\left(\frac{1}{i} \frac{\delta}{\delta \eta(x)}, \frac{1}{i} \frac{\delta}{\delta \bar{\eta}(x)}, \frac{1}{i} \frac{\delta}{\delta J(x)}\right)\right] Z_{0}[\eta, \bar{\eta}] Z_{0}[J] \tag{7}
\end{equation*}
$$

with

$$
\begin{align*}
Z_{0}[\eta, \bar{\eta}] & =\exp \left[-i \int d^{4} z_{1} \int d^{4} z_{2} \bar{\eta}\left(z_{1}\right) S\left(z_{1}, z_{2}\right) \eta\left(z_{2}\right)\right] \tag{8}\\
Z_{0}[J] & =\exp \left[-\frac{i}{2} \int d^{4} z_{1} \int d^{4} z_{2} J\left(z_{1}\right) \Delta_{F}\left(z_{1}, z_{2}\right) J\left(z_{2}\right)\right] \tag{9}
\end{align*}
$$

where $S\left(z_{1}, z_{2}\right), \Delta_{F}\left(z_{1}, z_{2}\right)$ are the fermion and scalar propagators.

2.1 [1 point]

In a first step convince yourself (no calculation needed) that the relevant diagram is contained in the scalar two-point Green's function at order g^{2} and can be written as

$$
\begin{align*}
G_{\phi}\left(x_{1}, x_{2}\right) \ni-g^{2} \int d^{4} y_{1} d^{4} y_{2} & \left(\frac{\delta^{2}}{\delta J\left(x_{1}\right) \delta J\left(x_{2}\right)} \frac{\delta}{\delta J\left(y_{1}\right)} \frac{\delta}{\delta J\left(y_{2}\right)} Z_{0}^{(2)}[J]\right) \tag{10}\\
\times & \left(\frac{\delta^{2}}{\delta \eta_{a}\left(y_{1}\right) \delta \bar{\eta}_{a}\left(y_{1}\right)} \frac{\delta^{2}}{\delta \eta_{b}\left(y_{2}\right) \delta \bar{\eta}_{b}\left(y_{2}\right)} Z_{0}^{(2)}[\eta, \bar{\eta}]\right),
\end{align*}
$$

where a, b are spinor indices. The expressions $Z_{0}^{(2)}[J]$ and $Z_{0}^{(2)}[\eta, \bar{\eta}]$ are the second-order expansions of the exponentials of (9) and (8). Write them down.

2.2 [3 points]

Now compute the functional derivatives acting on $Z_{0}^{(2)}[\eta, \bar{\eta}]$, i.e. only the second bracket in (10), which shows that there appears an additional minus sign.

