Quantenfeldtheorie und Theoretische Elementarteilchenphysik (exercise sheet 3)

Tobias Hurth, Andreas v. Manteuffel \& Raoul Malm
SS 2014
Questions: malmr@uni-mainz.de
Hand-in on May 20th, 2014

1 Path integral for the harmonic oscillator

Consider the one-dimensional harmonic oscillator with the Lagrangian

$$
\begin{equation*}
L(q(t), \dot{q}(t))=\frac{m}{2} \dot{q}^{2}(t)-\frac{m w^{2}}{2} q^{2}(t), \tag{1}
\end{equation*}
$$

with mass $m>0$ and angular frequency $w>0$.

1.1 (10 points)

Calculate the transition amplitude (set $\hbar=1$)

$$
\begin{equation*}
K\left(q_{f}, T ; q_{i}, 0\right) \equiv\left\langle q_{f}, T \mid q_{i}, 0\right\rangle=\int_{q(0)=q_{i}}^{q(T)=q_{f}} \mathcal{D} q \exp \left[i \int_{0}^{T} d t L(q(t), \dot{q}(t))\right] \tag{2}
\end{equation*}
$$

for $\frac{\pi}{w}>T>0$ in the path-integral formalism. The boundary conditions are $q(0)=q_{i}$ and $q(T)=q_{f}$. You should find the following result

$$
\begin{equation*}
K\left(q_{f}, T ; q_{i}, 0\right)=\left(\frac{m w}{2 \pi i \sin (w T)}\right)^{1 / 2} \exp \left(\frac{i m w}{2 \sin (w T)}\left[\left(q_{i}^{2}+q_{f}^{2}\right) \cos (w T)-2 q_{i} q_{f}\right]\right) . \tag{3}
\end{equation*}
$$

Remark: One suggestion to solve the problem is to use that an arbitrary path can be written as $q(t)=q_{c}(t)+\eta(t)$, where $q_{c}(t)$ is the classical path fulfilling the Euler-Lagrange equations of (1) with the corresponding boundary conditions $q_{c}(0)=q_{i}, q_{c}(T)=q_{f}$, while $\eta(t)$ is defined to be a deviation from that path. You should obtain

$$
\begin{equation*}
K\left(q_{f}, T ; q_{i}, 0\right)=\exp \left[i S\left[q_{c}\right]\right] \int_{\eta(0)=0}^{\eta(T)=0} \mathcal{D} \eta \exp [i S[\eta]], \tag{4}
\end{equation*}
$$

where $S\left[q_{c}\right]$ is the action when the classical solution is inserted, while $S[\eta]$ is the action inserting the deviations $\eta(t)$. To perform the path integral one can expand $\eta(t)$ into orthonormal basis functions such that

$$
\begin{equation*}
\eta(t)=\sum_{n=1}^{\infty} c_{n} \sqrt{\frac{2}{T}} \sin \left(\frac{n \pi t}{T}\right) \tag{5}
\end{equation*}
$$

with coefficients c_{n}. Then you can first perform the t-integration in the action $S[\eta]$. After that you can discretize the path integral into $N+1$ equal segments and express the measure as

$$
\begin{equation*}
\mathcal{D} \eta=\lim _{N \rightarrow \infty} C_{N} \int\left(\prod_{n=1}^{N} d c_{n}\right) \tag{6}
\end{equation*}
$$

where C_{N} is some normalization constant (independent of w). This will allow you to perform the integrations. Finally you can determine the normalization constant by setting $w \rightarrow 0$ and comparing your expression with the result for the freely moving particle.

1.2 (5 points)

Check whether the obtained amplitude (3) obeys the Schrödinger equation,

$$
\begin{equation*}
i \frac{\partial}{\partial t} K\left(q_{f}, t ; q_{i}, 0\right)=H K\left(q_{f}, t ; q_{i}, 0\right) \tag{7}
\end{equation*}
$$

where H is the Hamiltonian corresponding to the Lagrangian in (1) expressed in terms of q_{f} and $p_{f}=-i \partial / \partial q_{f}$. Then find the energy spectrum of K and show that it takes the form $E_{n}=w(n+1 / 2)$, with $n \in \mathbb{N}$.

