Quantenfeldtheorie und Theoretische Elementarteilchenphysik

 (exercise sheet 2)Tobias Hurth, Andreas v. Manteuffel \& Raoul Malm
SS 2014
Questions: malmr@uni-mainz.de
Hand-in on May 13th, 2014

1 Path integral for a freely moving particle

Show that the transition amplitude for a free particle with mass m moving in one dimension takes the form (set $\hbar=1$)

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\left[\frac{m}{2 \pi i\left(t_{f}-t_{i}\right)}\right]^{1 / 2} \exp \left[\frac{i m}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}\right] \tag{1}
\end{equation*}
$$

where $|q, t\rangle$ is a quantum state at time t and position q.

1.1 Hamiltonian method (3 points)

You should check that this result can be obtained from the Hamiltonian representation of the transition amplitude,

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\left\langle q_{f}\right| \exp \left[-i H\left(t_{f}-t_{i}\right)\right]\left|q_{i}\right\rangle \tag{2}
\end{equation*}
$$

where $H=p^{2} / 2 m$.

1.2 Path integral method (3 points)

Now you should use the path integral (Lagrangian) representations of the transition amplitude,

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int \mathcal{D} q \exp \left[i \int_{t_{i}}^{t_{f}} d t L(q(t), \dot{q}(t))\right] \tag{3}
\end{equation*}
$$

where $L(q(t), \dot{q}(t))=\frac{m}{2} \dot{q}^{2}(t)$ and the integration measure in the path integral representation is given by

$$
\begin{equation*}
\mathcal{D} q=\lim _{n \rightarrow \infty}\left(\frac{m}{2 \pi i \tau}\right)^{(n+1) / 2} \prod_{k=1}^{n} d q_{k} \tag{4}
\end{equation*}
$$

with $t_{f}-t_{i}\left(t_{f}>t_{i}\right)$ being divided into $n+1$ equal segments of $\tau: t_{i} \equiv t_{0}, t_{1}, t_{2}, \ldots, t_{n-1}, t_{n}, t_{n+1} \equiv$ t_{f} having the corresponding positions $q_{i} \equiv q_{0}, q_{1}, q_{2}, \ldots, q_{n-1}, q_{n}, q_{n+1} \equiv q_{f}$.
Remark: You can use the following formula for the successive Gaussian integrations

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x \exp \left[a\left(x-x_{1}\right)^{2}+b\left(x-x_{2}\right)^{2}\right]=\left[\frac{-\pi}{a+b}\right]^{1 / 2} \exp \left[\frac{a b}{a+b}\left(x_{1}-x_{2}\right)^{2}\right] \tag{5}
\end{equation*}
$$

where $a, b \in \mathbb{C}$ and $\operatorname{Re} a \leq 0, \operatorname{Re} b \leq 0$.

