IDSIA
Draft March 28, 2019

Curiosity: Learning from the Program

of the Forward-Dynamics Model
(Technical Report)

R. Malm

Swiss AI Lab IDSIA
Galleria 2, Via Cantonale 2c, CH-6928 Manno

Abstract

In contrast to the classical curiosity-driven reinforcement-learning (RL) agent, we investigate the idea
that the agent has access to the program of the forward-dynamics model of the environment which might
be beneficial in finding an improved exploration strategy. This idea has been proposed by J. Schmidhuber.
All experiments have been conducted by the author of this report. The report presents the results of
working for 2.5 months at IDSTA on the topic curiosity in deep reinforcement learning.

1 Introduction

An RL agent typically needs to explore its environment in some way to gain experience that allows it to
learn better and eventually optimal policies. One distinguishes undirected exploration methods, which rely on
random actions (such as e-greedy), from directed exploration strategies, that are mostly based on the principle
of optimism in the face of uncertainty. Here, we focus on the latter form of strategies in the form of intrinsic
motivation/rewards for the agent, which become critical whenever extrinsic rewards of the environment are
sparse. Most formulations of intrinsic rewards can be grouped into two broad classes that 1) encourage the
agent to explore 'novel’ states, and 2) encourage the agent to perform actions that reduce the error /uncertainty
in the agent’s ability to predict the consequences of its own actions. The former class is based on the idea
of wvisitation counts [THIO] which discourage the agent from revisiting the same states, while the latter one
is based on using the prediction error of a forward-dynamics model of the environment as the reward signal
[11 21, [4H6] .

In this report we focus on the second class, the curiosity-driven RL agent, which requires building a model
of the environmental dynamics that predicts the next state s;y; € S given the current state s; € S and
action a; € A executed at time ¢. [2] is a recent paper along these lines, which includes a forward and inverse
dynamics model as well as feature representations for the states, and investigates curiosity in sparse extrinsic
reward environments like Super Mario Bros. and Viz-Doom. For the sake of clarity in this report we will
neglect the inverse dynamics model and the explicit feature representations of the states, which is justified due
to the simplicity of the considered environment in the experimental section.

In this case, termed the classical approach to curiosity, the agent receives an intrinsic reward r{ at time ¢,
which is proportional to the model’s prediction error %Hst —34||3, where §; = 8;(s¢_1,a;_1;0ar) is the prediction
of the forward model given the previous state s;_1 and action a;_1, as well as the model parameters 6,;. The

intrinsic reward r} = ri(s, §;) is then additively combined with the extrinsic reward r¢(s;) of the environment,
such that the total reward is given by 7; = ri + r¢. The agent’s probabilistic policy p(.|s:; 0p), parameterised
by 0p, is then updated such that the agent’s action probability for a given (s¢, a;) pair is increased or decreased
according to the implemented RL algorithm. In the following we will refer to the forward dynamics model of
the environment as the predictor.

2 Idea

The core idea is that the curiosity-driven RL agent is allowed to see the program of the predictor in order
to surprise/fool the predictor, i.e. by taking an action where the model’s prediction error is large in order to
receive a high intrinsic reward. However, since the agent does not know the true next state the agent cannot
directly learn to predict the prediction error. Given the current state and the current predictor’s program,
the agent needs to learn which action will lead to the predictor’s smallest confidence in its own next state
prediction. Taking this action, where the predictor is most uncertain about its own prediction, will probably
result in a large prediction error and therefore high intrinsic reward.

In other words, the agent should use the predictor’s program to implicitly learn a (model-based) planning
strategy to surprise/fool the environmental model. The word implicitly is highlighted here, since it means that
the agent (or self-model) is not trained to predict the future prediction error of the predictor (or world-model),
see [11] for a recent paper that ezplicitly trains the agent to predict the world-model’s loss.

Now, in practical terms our idea implies that we feed the current weights 6); of the predictor at time
step ¢ as an additional input, besides the environmental state s;, to the agent, such that the agent’s action
probability is given by p(a¢|s:, 0ar;0p) for an action a; € A. Theoretically, the agent mighﬂ have the ability
to infer the uncertainty of the predictor in the next state s;y1 given the triple (s¢, as, 0pr). The corresponding
algorithm is shown below.

Algorithm 1:

1 initialise @/, Op

2 for each episode k =1,2,... do

3 reset environment; reset agent buffer; fix sg to start state;

4 for each time stept =0,1,2,...,T —1 do

5 sample action a; using agent policy p(.|s:, Onr;0p)

6 take action a; in environment and observe next state s;;1, reward r¢, ,, done flag d;

7 use predictor to compute intrinsic reward r;, ;, and then total reward r; 1

8 add tuple (s, 0ar, ag, Sea1, 7141, d¢) to agent buffer

9 add tuple (s, a, s¢11) to predictor buffer

10 update predictor with transitions (s;, a;, Sinest), ¢ = 1,2.., N uniform rand. sampled from the
predictor buffer:

11

N o

1 .
On O —an Vou > §H5i,neaﬁt — 8(si a5 0m)|13

i=1

12 end
13 update weights 0p of the agent policy via PPO using the current trajectory from the agent buffer

14 end

It is worth emphasising, that the agent does not need and should not learn to execute the predictor’s program

1We have weakened this statement, since there is a caveat in the argument because the predictor is not completely defined
solely by its weights.

four_rooms_maze

Figure 1: Four-rooms maze environment. The start position of the agent is shaded in light gray,
while the goal position is shaded in dark gray. The walls are shaded in black.

internally, since relevant is only the uncertainty in the predicted next state and not its actual value. Thus, the
agent has to learn its own metric of measuring uncertainty. This might be helpful in addressing the general
inherent limitation of prediction error based curiosity in case of stochastic environments. According to the
classical curiosity-driven approach, if the transitions in the environment are random, then even with a per-
fect dynamics model, the expected reward will be the entropy of the transition, and the agent will seek out
transitions with the highest entropy. This is also known as the noisy-TV problem [4]. But, if the agent can
see the predictor’s program it might realise a certain repeating pattern and take actions to get unstuck from
stochastic environmental dynamics. However, the noisy-TV problem is beyond the scope of this report.

Finally, it is worth mentioning that we can combine the state space S of the environment with the predictor
program space Py defining a new observation space O = S X Pas. In this case the total reward at time step ¢
is only dependent on the observation o,y € O and action a;_1 € A at the previous time step ¢ — 1. Thus, the
whole problem can be modelled as a Markov-Decision Process (MDP). However, this statement is not strictly
true anymore if we replace the predictor’s program space Paq by the predictor’s weight space O ;. The reason
is that knowing the weights of a network is not sufficient to fully describe the network, since information about
the topology, e.g. weight connections or activation functions, is missing.

3 Experiments

We implement deep RL agents, where the probabilistic policy is a feed-forward neural network (2 hidden
layers of each 32 units) which is trained via PPO [3]. All PPO agents are implemented using the generalised
advantage estimate [12] with v = 0.99 and A\ = 0.97 as a baseline, which can be calculated from the agent’s
rewards and the state-value function. The clipping range is fixed to 0.2 for the PPO surrogate loss function.
The predictor is a feed-forward neural network (1 hidden layer, 2 hidden units as a default) trained via super-
vised learning with a mean-squared error loss. Intrinsic rewards are clipped to the range [0,0.1]. Each neural
network is optimised with Adam where we set the maximal learning rate to 0.0005 for the agent networks and
0.001 for both the state-value function and predictor networks.

As the environment we choose the four-rooms maze, that has 104 distinct states, which the agent is allowed
to occupy. The start state is always localised in the upper left corner while the goal state is fixed within the
lower right room, see Figure Each trajectory 7 = sg,aq, S1...,ST—1,a7_1, ST has a fixed and finite time
horizon T = 21, which is the minimal number of steps required for the agent to visit any state within one
episode. If the agent visits the goal state it receives an extrinsic reward of 10 once, otherwise zero extrinsic
reward. The shortest path to the goal state comprises 17 time steps.

We consider three main scenarios. In the first scenario the agent has no access to the predictor’s weights

and is trained via PPO using the intrinsic rewards. This corresponds to the classical curiosity approach, and is
referred to as the ppo_predictor scenario. The second scenario differs from the first one by additionally feeding
randomly fixed weights of the same dimension as the weights of the predictor into the agent. This case is
referred to as the ppo_predictor_fized_weights scenario. Finally, the third scenario is the agent, that receives
the current weights of the predictor at each time step. This corresponds to the proposed idea in this report,
and is referred to as the ppo_predictor_weights scenario.

The upper plot in Figureshows the extrinsic return for each episode during training for rs (random search),
ppo (just the PPO agent without intrinsic rewards), ppo_predictor_fized_weights and ppo_predictor_weights. In
generating the plots we have used optimal hyper-parameters and performed 5 runs with different seeds for each
of the agents. Clearly, rs and ppo cannot efficiently explore and solve the maze problem. The agents of the
three scenarios have comparable performance, slowly increasing the extrinsic return with each episode. The
curves are fluctuating, which can be explained by the encoding of each environmental state as a (x,y) tuple
where each coordinate is normalised to the range [—1, 1]. Thus, the agent has to precisely learn small changes
in (z,y) in order to learn how to reach the goal state. The lower plot shows the number of distinct states
visited by the agent in the past and can be interpreted as a measure for exploration (in analogy to visitation
counts) independently of extrinsic rewards. Again, we see that while rs and ppo perform poorly, the three
main scenarios perform similarly.

Figure 3| differs from Figure |2| by encoding the states as one-hot vectors. Interestingly, the agent of the
ppo_predictor scenario can quickly learn a robust policy to reach the goal state. On the other hand, the ad-
ditional input of the predictor’s weights prevent the remaining agents to efficiently learn a robust policy that
achieves the goal state. The signal from the sparse representation of the states is very weak compared to the
dense representation of the predictor’s weights.

Figure 4] shows that the number of hidden units, which is related to the capacity, of the predictor has a
strong effect on the performance of the ppo_predictor_weights scenario. Clearly, if the capacity is too small
(no hidden units) the environmental dynamics model can not be learned sufficiently by the predictor and the
guidance through intrinsic rewards leads to a suboptimal exploration strategy for the agent. On the other hand,
if the capacity is too large the additional weight input to the agent diminishes its capability to learn a robust
policy that efficiently reaches the goal state. The best performance for the agent of the ppo_predictor_weights
scenario can be achieved if the predictor network has two hidden units.

4 Conclusion

None of the experiments has shown any hint that the agent, which can see the predictor’s weights, is able to
learn an improved exploration strategy allowing it to solve the four-rooms maze problem more efficiently. On
the contrary, the additional weight input even diminishes the performance of the agents if the environmental
states are one-hot encoded or if the number of predictor weights gets too large.

Conceptually, it should be mentioned that the predictor’s weights are not sufficient to fully describe the
predictor, since the topology of the predictor’s network (weight connections, activation functions, etc.) is not
captured.

While the idea, that an agent might be able to use the predictor’s program in order to implicitly learn a
planning strategy for achieving higher intrinsic rewards, sounds intuitive, finding a working implementation
of this idea probably requires a more principled formulation as well as an extensive amount of experimental
work.

References

[1]

2]

Y. Burda, H. Edwards, D. Pathak, A. J. Storkey, T. Darrell, A. A. Efros, Large-Scale Study of Curiosity-
Driven Learning, CoRR, [arXiv: 1808.04355]

D. Pathak and P. Agrawal and A. A. Efros and T. Darrell, Curiosity-driven Exploration by Self-supervised
Prediction, CoRR, [arXiv:1705.05363]

J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, Proximal Policy Optimization Algo-
rithms, CoRR, [arXiv:1707.06347]

J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In From animals to animats: Proceedings oft he first international conference on simulation of
adaptive behavior, 1991.

R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational information
maximizing exploration. In NIPS, 2016.

S. Mohamed and D. J. Rezende. Variational information maximisation for intrinsically motivated rein-
forcement learning. In NIPS, 2015.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. In NIPS, 2016.

M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer. Exploration in model-based reinforcement learning
by empirically estimating learning progress. In NIPS, 2012.

G. Ostrovski, M. G. Bellemare, A. v. d. Oord, and R. Munos. Count-based exploration with neural density
models. [arXiv:1703.01310], 2017.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian reinforcement
learning. In ICML, 2006.

Learning to Play with Intrinsically-Motivated Self-Aware Agents A Haber, Nick; Mrowca, Damian; Fei-
Fei, Li; Yamins, Daniel L. K. arXiv:1802.07442

T High-Dimensional Continuous Control Using Generalized Advantage Estimation A Schulman, John;
Moritz, Philipp; Levine, Sergey; Jordan, Michael;Abbeel, Pieter arXiv:1506.02438

10

ext_return

100

80

@
=]

n_states_visited

40

20

model_name

rs{}

ppo{}

ppo_predictor{}

ppo_predictor_fixed_weights{}

ppo_predictor_weights{}

2500

2500

four_rooms_maze{'env_max_steps': 21, 'env_reward': 10.0}

5000

5000

7500

four_rooms_maze{'env_max_steps': 21, 'env_reward': 10.0}

7500

10000
episodes

10000
episodes

12500

12500

15000

15000

17500 20000

model_name

rs{}
ppo_predictor_fixed_weights{}
ppo{}
ppo_predictor_weights{}
ppo_predictor{}

17500 20000

Figure 2: The upper (lower) plot shows the extrinsic return (number of distinct states visited by
the agent) versus the number of episodes during training. The predictor network has one hidden
layer with 2 units for all agents. The states are encoded as (z,y) coordinates. See the text for

further details.

10

ext_return

80

=)
o

n_states_visited

40

20

four_rooms_maze{'env_max_steps': 21, 'env_reward': 10.0}

model_name

rs{}

ppo_predictor{}
ppo_predictor_weights{}
ppo{}
ppo_predictor_fixed_weights{}

0 2500 5000 7500

four_rooms_maze{'env_max_steps': 21, 'env_reward': 10.0}

10000
episodes

12500

0 2500 5000 7500

10000
episodes

12500

15000

15000

17500

20000

model_name
rs{}
ppo_predictor{}
ppo_predictor_weights{}
ppo{}
ppo_predictor_fixed_weights{}

17500

20000

Figure 3: In contrast to Figure[2] the states are encoded as one-hot vectors. The predictor network
has one hidden layer with 32 units for the ppo_predictor scenario, otherwise 2 hidden units. The
agent of the ppo_predictor scenario can quickly learn a robust policy, while the remaining agents

perform poorly. See text for further details.

ext_return

n_states_visited

four_rooms_maze{'env_max_steps': 21, 'env_reward":

predictor_d_hidden_layers
10 14}
[41{}
[16]{}
[21{}
[81{}

0 2500 5000 7500

four_rooms_maze{'env_max_steps': 21, 'env_reward': 10.0}

100

90

80

70

60

50

40

30

0 2500 5000 7500

10000
episodes

10000
episodes

12500

12500

10.0}

15000

15000

17500 20000

predictor_d_hidden_layers
[}

[41{}

[16]{}

[21{}

[81{}

17500 20000

Figure 4: The ppo_predictor_weights scenario is shown with varying number of hidden units ([]: no
hidden units,: [2]: 2 hidden units, ...) for the predictor network. The states are encoded as (x,y)
coordinates. Clearly, the scenario with 2 hidden units for the predictor network performs best in

the upper plot. See text for further details.

	Introduction
	Idea
	Experiments
	Conclusion

